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CONTEXT: TIME DIVERSITY

Time diversity can be obtained by interleaving and 
coding over symbols across different coherent time 
periods.periods.

Channel: time
diversity/selectivity, 
b t l t dbut correlated across
successive symbols

(Repetition) Coding(Repetition) Coding…
w/o interleaving: a full 
codeword lost during fade

Interleaving: of sufficient depth: 
(> coherence time)

⇒At most 1 symbol of codeword lost

Coding alone is not sufficient!



WHAT IS CHANNEL CODING?

Transforming signals to improve communications performance 
by increasing the robustness against channel impairments 
(noise, interference, fading, ..)

It i ti di it t h i b t b b dl th ht f� It is a time-diversity technique, but can be broadly thought of as 
techniques to make better use of the degrees-of-freedom in 
channels (eg: space-time codes)

Waveform coding: Transforming waveforms to better waveforms

Structured sequences: Transforming data sequences into better
sequences having structured redundancysequences, having structured redundancy.

� “Better” in the sense of making the decision process less subject to 
errors.
� Introduce constraints on transmitted codewords to have greater 

“distance” between themdistance  between them

Note: Channel coding was developed in the context of AWGN 
channels & we shall study them in the same context
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CHANNEL CODING SCHEMES: CHANNEL CODING SCHEMES: 
BLOCK, CONVOLUTIONAL, TURBO



CODING GAIN: THE VALUE OF CODING…

� Error performance vs. bandwidth
� Power vs. bandwidth
� Data rate vs. bandwidth
� Capacity vs. bandwidth 
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CODING GAIN POTENTIAL

Gap-from-Shannon-limit: 
@BER=10-5

9.6 + 1.59 = 11.2 dB9.6 + 1.59  11.2 dB
(about 7.8 dB if you maintain
spectral efficiency)



THE ULTIMATE SHANNON LIMIT

Goal: what is min Eb/No for any spectral efficiency 
(ρ→0)?

Spectral efficiency ρ = B/W = log2 (1 + SNR)
�where SNR = Es/No where Es=energy per symbol
�Or SNR = (2ρ - 1)�Or SNR = (2ρ - 1)
� Eb/No = Es/No * (W/B) 

= SNR/ρ
L t t t i t h t Sh ’ b dEb/No = (2ρ - 1)/ρ > ln 2 = -1.59dB

� Fix ρ = 2 bits/Hz = (2ρ 1)/ρ = 3/2 = 1 76dB

Lets try to appreciate what Shannon’s bound means
by designing some simple codes and comparing it to
the Shannon bound

� Fix ρ = 2 bits/Hz = (2ρ - 1)/ρ = 3/2 = 1.76dB
� Gap-to-capacity @ BER =10-5: 

9.6dB + 1.59 = 11.2 dB (without regard for spectral eff.)
(k i l ff )or 9.6 – 1.76 = 7.84 dB (keeping spectral eff. constant)



BINARY SYMMETRIC CHANNEL (BSC)

Given a BER (f), we can construct a BSC with this BER… 



RELIABLE DISK DRIVE APPLICATION

We want to build a disk drive and write a GB/day for 10 
years. y

�=> desired BER: 10-15

Physical solution: use more reliable components, 
reduce noise

System solution: accept noisy channel, detect/correct 
errors (engineer reliability over unreliable channels)errors (engineer reliability over unreliable channels)



REPETITION CODE (R3) & MAJORITY VOTE DECODING

AWGN: 



PERFORMANCE OF R3

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. 

For BSC with f = 0.1, the R3 code has a probability of error, after 
decoding, of pb = 0.03 per bit or 3%.

R t lt d 3 i di k t t th l b d t 3% TRate penalty: need 3 noisy disks to get the loss prob down to 3%. To 
get to BER: 10-15, we need 61 disks!



CODING: RATE-BER TRADEOFF?

Repetition
code R3:code R3:

L t t t d i “b tt ” d H i C dLets try to design a “better” code: Hamming Code

Shannon: The perception that there is a necessary tradeoff between Rate 
and BER is illusory! It is not true upto a critical rate the channeland BER is illusory! It is not true upto a critical rate, the channel 
capacity!

� You only need to design better codes to give you the coding gain…



HAMMING CODE: LINEAR BLOCK CODE

A block code is a rule for converting a sequence of source 
bits s, of length K, say, into a transmitted sequence t of 
length N bitslength N bits.

In a linear block code, the extra N-K bits are linear functions
of the original K bits; these extra bits are called parity-
check bitscheck bits.

(7, 4) Hamming code: transmits N = 7 bits for every K = 4 
source bits.

Th fi t f t itt d bit t t t t t l t th f� The first four transmitted bits, t1t2t3t4, are set equal to the four 
source bits, s1s2s3s4. 
� The parity-check bits t5t6t7 are set so that the parity within each 

circle (see below) is evencircle (see below) is even



HAMMING CODE: (CONTD)



HAMMING CODE: SYNDROME DECODING
If channel is BSC and all source vectors are equiprobable, then…
�… the optimal decoder identifies the source vector s whose encoding 

t(s) differs from the received vector r in the fewest bits.
� Similar to “closest-distance” decision rule seen in demodulation!
Can we do it more efficiently? Yes: Syndrome decoding

Tx
The decoding task is to find the smallest set of flipped bits that can account forThe decoding task is to find the smallest set of flipped bits that can account for 
these violations of the parity rules. 
[The pattern of violations of the parity checks is called the syndrome: the 
syndrome above is z = (1, 1, 0), because the first two circles are `unhappy' y ( , , ), ppy
(parity 1) and the third circle is `happy‘ (parity 0).]



SYNDROME DECODING (CONTD)

Can we find a unique bit that lies inside all the `unhappy' circles and 
outside all the `happy' circles? 

� If so, the flipping of that bit would account for the observed syndrome.



HAMMING CODE: PERFORMANCE

A decoding error will occur whenever the noise has flipped more 
than one bit in a block of seven. 

The probability scales as O(f 2) as did the probability of error forThe probability scales as O(f ), as did the probability of error for 
the repetition code R3; but Hamming code has a greater rate, R 
= 4/7.

Dilbert Test: About 7% of the decoded bits are in error The residualDilbert Test: About 7% of the decoded bits are in error. The residual 
errors are correlated: often two or three successive decoded 
bits are flipped…

Generalizations of Hamming codes: called BCH codesGeneralizations of Hamming codes: called BCH codes



SHANNON’S LEGACY: RATE-RELIABILITY OF 
CODES

Noisy-channel 
coding 
theorem:theorem: 
defines 
achievable 
rate/reliabilityrate/reliability 
regions

Note: you canNote: you can 
get BER as 
low as 
desired bydesired by 
designing an 
appropriate 
code within 
th itthe capacity 
region



SHANNON LEGACY (CONTD)

The maximum rate at which communication is possibleThe maximum rate at which communication is possible 
with arbitrarily small pb is called the capacity of the 
channel.

BSC(f) capacity:
f = 0.1 has capacity C ≈ 0.53.



CAVEATS & REMARKS

Strictly, the above statements might not be quite right:
Shannon proved his noisy-channel coding theorem by 

studying sequences of block codes with ever-
increasing block lengths and the required blockincreasing block lengths, and the required block 
length might be bigger than a gigabyte (the size of 
our disk drive), 

… in which case, Shannon might say `well, you can't 
do it with those tiny disk drives, but if you had two 

i t b t d i ld k i l hi h
y , y

noisy terabyte drives, you could make a single high-
quality terabyte drive from them'.

Information theory addresses both the limitations and 
f

o at o t eo y add esses bot t e tat o s a d
the possibilities of communication.

�Reliable communication at any rate beyond the capacity 
is impossible, and that reliable communication at all rates 
up to capacity is possible.



GENERALIZE: LINEAR CODING/SYNDROME 
DECODINGDECODING
The first four received bits, r1r2r3r4, purport to be the four 

source bits; and the received bits r5r6r7 purport to be the 
parities of the source bits, as defined by the generator 
matrix Gmatrix G. 

� Evaluate the three parity-check bits for the received bits, r1r2r3r4, 
and see whether they match the three received bits, r5r6r7. 

The differences (modulo 2) between these two triplets are 
called the syndrome of the received vector. 

� If the syndrome is zero then the received vector is a codeword, 
and the most probable decoding is given by reading out its first 
f bifour bits. 
� If the syndrome is non-zero, then the noise sequence for this block 

was non-zero, and the syndrome is our pointer to the most 
probable error pattern. 



LINEAR CODING/SYNDROME DECODING 
(CONTD)(CONTD)

Coding:

� Received vector & Syndome:

L t b ild li d f d (fi t i i l )
The syndrome-decoding problem is to find the most 
probable noise vector n satisfying the equation

Lets now build linear codes from ground up (first principles)

� Parity Check Matrix H:



SOME DEFINITIONS

Binary field : 
� The set {0,1}, under modulo 2 binary addition and multiplication forms a field. 

� Binary field is also called Galois field, GF(2).

110
000

=⊕
=⊕

010
000

=⋅
=⋅

Addition Multiplication

011
101
110

=⊕
=⊕
=⊕

111
001
010

=⋅
=⋅
=⋅



DEFINITIONS: FIELDS

Fields : 
� Let F be a set of objects on which two operations ‘+’ 

and ‘.’ are defined.and .  are defined. 
� F is said to be a field if and only if

1. F forms a commutative group under +
operation The additive identity element isoperation. The additive identity element is 
labeled “0”.

2 F {0} f t ti d
FabbaFba ∈+=+⇒∈∀ ,

2. F-{0} forms a commutative group under .
operation. The multiplicative identity element is 
labeled “1”. FabbaFba ∈⋅=⋅⇒∈∀ ,

3. The operations “+” and “.” distribute:)()()( cabacba ⋅+⋅=+⋅



DEFINITIONS: VECTOR SPACE OVER FIELDS

Vector space: (note: it mixes vectors and scalars)

� Let V be a set of vectors and F a fields of elements� Let V be a set of vectors and F a fields of elements 
called scalars. V forms a vector space over F if:

1. Commutative:
2 Closure: FV∀2. Closure:
3. Distributive: 

4. Associative:
VuvVv ∈=⋅⇒∈∀∈∀ aFa ,

FV ∈+=+⇒∈∀ uvvuvu,

5. Identity Element: 

vuvuvvv ⋅+⋅=+⋅⋅+⋅=⋅+ aaababa )(   and   )(

)()(,, vvv ⋅⋅=⋅⋅⇒∈∀∈∀ babaVFba
vvVv =⋅∈∀ 1  ,



VECTOR SPACES, SUBSPACES

Examples of vector spacesnV
�The set of binary n-tuples, denoted by  

),0111(),0101(),0100(),0011(),0010(),0001(),0000{(4 =V

Vector subspace:

)}1111(),1101(),1100(),1011(),1010(),1001(),1000(         

p
�A subset S of the vector space         is called a subspace

if:
�Zero: The all zero vector is in S

nV

�Zero: The all-zero vector is in S.
�Closure: The sum of any two vectors in S is also in S.
�Example: fbi)}1111()1010()0101()0000{( Vp . ofsubspaceais   )}1111(),1010(),0101(),0000{( 4V



SPAN, BASES…

Spanning set:
�A collection of vectors                              , { }nG vvv ,,, 21 K=

the linear combinations of which include all vectors in a 
vector space V, is said to be a spanning set for V or to 
span V.

{ }nG vvv ,,, 21 K

p
�Example:

{ } .  spans  )1001(),0011(),1100(),0110(),1000( 4V
Bases:
�A spanning set for V that has minimal cardinality is 

called a basis for V.
�Cardinality of a set is the number of objects in the set.
�Example:

{ }{ } .for  basis a is )0001(),0010(),0100(),1000( 4V



LINEAR BLOCK CODES ARE JUST SUBSPACES!

Linear block code (n,k)
� A set            with cardinality     is called a linear block code if, and only if, it is a 

subspace of the vector spaceVC ⊂ k2subspace of the vector space     .

nV

nVC ⊂ 2

Members of C are called codewords.
The all-zero codeword is a codeword.
Any linear combination of code-words is a codeword.

n

   nk VCV ⊂→



LINEAR BLOCK CODES – CONT’D

Vmapping nV
kV

C
mapping

Bases of C



LINEAR BLOCK CODES – CONT’D

The information bit stream is chopped into blocks of k bits. 
Each block is encoded to a larger block of n bitsEach block is encoded to a larger block of n bits.
The coded bits are modulated and sent over channel.
The reverse procedure is done at the receiver.

Data block
Channel

CodewordData block encoder Codeword

k bits n bits

biR d dk

rate Code   

bits Redundant        

n
kR

n-k

c = n



RECALL: REED-SOLOMON RS(N,K): LINEAR ALGEBRA 
IN ACTIONIN ACTION…

RS(N,K) >= K of N
received

Recover K 
data packets!

FEC (N K)FEC (N-K)

Block 
Size k

Data = K

Size 
(N)

Lossy Network
This is linear algebra in action: design a

k-dimensional vector sub-space out of an
N-dimensional vector space



LINEAR BLOCK CODES – CONT’D

The Hamming weight (w) of vector U, denoted by w(U), 
i th b f l t i Uis the number of non-zero elements in U.

The Hamming distance (d) between two vectors U and 
V is the number of elements in which they differV, is the number of elements in which they differ.  

The minimum distance of a block code isThe minimum distance of a block code is 
)()( VUVU, ⊕= wd

)(min),(minmin iijiji
wdd UUU ==

≠



LINEAR BLOCK CODES – CONT’D

Error detection capability is given by

E ti bilit t f d hi h i

1min −= de

Error correcting capability t of a code, which is 
defined as the maximum number of guaranteed 
correctable errors per codeword, is⎥⎢ −1mind

⎥⎦
⎥

⎢⎣
⎢=

2
mint



LINEAR BLOCK CODES –CONT’D

nV
V

mapping

� A matrix G is constructed by taking as its rows the vectors on the basis,   

kV
C

.

Bases of C

},,,{ 21 kVVV K
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LINEAR BLOCK CODES – CONT’D

Encoding in (n,k) block code

mGU =
V ⎤⎡ 1

� The rows of G, are linearly independent. kn mmmuuu
V
V

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⋅= 2

1

2121 ),,,(),,,(
M

KK

kn

k

mmmuuu VVV
V

⋅++⋅+⋅=

⎥
⎦

⎢
⎣

2221121 ),,,( KK



LINEAR BLOCK CODES – CONT’D

Example: Block code (6,3)

⎤⎡⎤⎡ 001011V
000000000

Message vector Codeword
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SYSTEMATIC BLOCK CODES

Systematic block code (n,k)
� For a systematic code, the first (or last) k elements in the codeword are information bits.

][ IPG
matrixidentity   

][
kkk

k

×=
=

I
IPG

matrix   )( knkk −×=P

),...,,,,...,,(),...,,(
bits message

21

bitsparity 

2121 44344214434421 kknn mmmpppuuu −==U



LINEAR BLOCK CODES – CONT’D

For any linear code we can find an matrix
which its rows are orthogonal to rows of 

nkn ×− )(H
Gg G

0GH =T

Why? H checks the parity of the received word (i.e. 
maps the N-bit word to a M-bit syndrome). 

�Codewords (=mG) should have parity of 0 (i.e. null-Codewords ( mG) should have parity of 0 (i.e. null
space).

H  is called the parity check matrix and its rows are 
linearly independentlinearly independent.

For systematic linear block codes: ][ T
kn PIH −=



LINEAR BLOCK CODES – CONT’D

Format Channel 
encoding ModulationData source Um

g

Channel
decodingFormat Demodulation

DetectionData sink
rm̂

channel

Syndrome testing:
eUr +=

Syndrome testing:
�S is syndrome of r, corresponding to the error pattern e.



LINEAR BLOCK CODES – CONT’D

E tt S d

011000010
101000001
000000000

received. is    (001110)
ted.  transmit(101110)

=
=

r
U

Error pattern Syndrome

010010000
001001000
110000100
011000010

(100)(001110)
:computed is  of syndrome The

=== HrHS
r

TT

111010001
100100000
010010000

estimatedisvectorcorrectedThe
(100000)ˆ

issyndromethistoingcorrespondpattern Error 
=e

(101110)(100000)(001110)ˆˆ
estimatedisvector correctedThe

=+=+= erU

There is a unique mapping from Syndrome ↔ Error PatternThere is a unique mapping from Syndrome ↔ Error Pattern



STANDARD ARRAY: ERROR PATTERNS

Example: Standard array for the (6,3) code

d d

000110110010011100101000101111011011110101000001
000111110011011101101001101110011010110100000000

codewords

111100001000
000110110111011010101101101010011110110000000100
000101110001011111101011101100011000110110000010
000110110010011100101000101111011011110101000001

MMM

010110100101010001
010100100000
100100010000
111100001000

M

MMM

Coset:
Error pattern +
codeword

010110100101010001 LL

Coset leaders
(error patterns)(error patterns)



LINEAR BLOCK CODES – CONT’D

Standard array
1. For row                ,     find a vector in       of 

i i i ht hi h i t l d li t d i th
kni −= 232 Vminimum weight which is not already listed in the array.

2. Call this error pattern     and form the row as the 
corresponding coset

i = 2,...,3,2 nV

ie th:i

k221 UUU L
zero 

codeword

k22222 UeUee ⊕⊕
MOLM

L
coset

kknknkn 22222
UeUee ⊕⊕ −−− L

coset leaders



LINEAR BLOCK CODES – CONT’D

Standard array and syndrome table decodingy y g
1. Calculate syndrome 
2. Find the coset leader,           , corresponding to      .
3 C l l t d di

TrHS =

iee =ˆ S
3. Calculate                 and corresponding           .

� Note that 
� If error is corrected

erU ˆˆ += m̂

ˆ� If        , error is corrected.
� If        , undetectable decoding error occurs. )ˆˆ(ˆˆ e(eUee)UerU ++=++=+=

ee =ˆ

ee ≠ˆ



HAMMING CODES

Hamming codes
� Hamming codes are a subclass of linear block codes and 

belong to the category of perfect codes.
�Hamming codes are expressed as a function of a single 

integer , i.e. n and k are derived from m: 2≥mg ,2≥m

mk
n

m

m

12:bitsninformatioofNumber
12                           :length Code

=

−=

 t
mn-k

mk

1    :capability correctionError 
            :bitsparity  ofNumber 

12  :bitsn informatioofNumber 

=
=

−−=

�The columns of the parity-check matrix, H, consist of all 
non-zero binary m-tuples.



HAMMING CODES

Example: Systematic Hamming code (7,4)

1110001 ⎤⎡
][1101010

1110001

33
TPIH ×=

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
1011100 ⎥
⎥
⎦⎢

⎢
⎣

0001110 ⎤⎡

][
0100011
0010101
0001110

44×=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

= IPG

1000111
0100011 44×

⎥
⎥

⎦
⎢
⎢
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CYCLIC BLOCK CODES

Cyclic codes are a subclass of linear block codes.
Encoding and syndrome calculation are easily performed using feedback 

shift-registers.g
� Hence, relatively long block codes can be implemented with a reasonable 

complexity.

BCH and Reed-Solomon codes are cyclic codes. 



CYCLIC BLOCK CODES

A linear (n,k) code is called a Cyclic code if all cyclic shifts of a codeword are 
also a codeword.

),...,,,( 1210 −= nuuuuU “i” cyclic shifts of U

),...,,,,,...,,( 121011
)(

−−−+−−= inninin
i uuuuuuuU

U )1101(

�Example:

UUUUU
U

=====

=

)1101(   )1011(   )0111(   )1110(
)1101(

)4()3()2()1(



CYCLIC BLOCK CODES

Algebraic structure of Cyclic codes, implies expressing 
codewords in polynomial form

)1( degree     ...)( 1
1

2
210 n-XuXuXuuX n

n
−

−++++=U

� Relationship between a codeword and its cyclic shifts:

...

...,)(

11
1

2
2

101

1
1

2
2

10

++++++=

+++=

−−
−

−−

−
−

−

n
n

n
n

nn

n
n

n
n

uXuXuXuXuu

XuXuXuXuXXU
� Relationship between a codeword and its cyclic shifts:

)1()( 1
)1(

)1(

11

)(

2101

1
)1(

++= −

+−

n
n

Xu

nn

X

nn

XuX

n
n

U
U

4434421444444 3444444 21

)1( modulo )()()( += nii XXXX UU
By extension

)1( modulo )()()1( += nXXXX UU�Hence:



CYCLIC BLOCK CODES

Basic properties of Cyclic codes:
� Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C, there is a unique monic p y , q
polynomial          with minimal degree                   is called the 
generator polynomials.

2. Every code polynomial          in C, can be expressed uniquely as )(Xgy p y p q y
3. The generator polynomial         is a factor of 

)(g
)(  . Xnr g<

rXXX )( r
r XgXggX +++= ...)( 10g

)(XU
)()()( XXX gmU )()()( XXX gmU =

)(Xg
1+nX



CYCLIC BLOCK CODES

4. The orthogonality of G and H in polynomial form is expressed as                               
This means          is also a factor of  

1)()( +nXXX hg
5. The row                  , of generator matrix is formed by the coefficients 

of the          cyclic shift of the generator polynomial. 

1)()( += nXXX hg
1+nX)(Xh

kii ,...,1, =
"1"i

⎥
⎤

⎢
⎡

⎤⎡ rggg
X

L10)(
0

g
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T lit M t i (lik th i l t t i ) Effi i t Li Al b
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⎢
⎢
⎢
⎢
⎢
⎢

=

⎥
⎥
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⎥

⎦

⎤

⎢
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⎣
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− r

r

k ggg

ggg

XX

XX
X

L

OOOO

L

M
10

10

1 )(

)(
)(

g

g
g

G
Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra
Operations (multiplication, inverse, solution of Ax = b) etc possible

⎥⎦⎢⎣
⎦⎣

rggg
XX

L10

)(
0

g



CYCLIC BLOCK CODES

Systematic encoding algorithm for an (n,k) Cyclic code:

1. Multiply the message polynomial               by p y g p y y

2. Divide the result of Step 1 by the generator 
polynomial Let be the reminder

)(Xm knX −

polynomial          . Let            be the reminder.

3. Add            to                    to form the codeword            )(Xg )(Xp

)(Xp )(XX kn m− )(XU

Remember CRC used to detect errors in packets?
“Cyclic” Redundancy Check: same idea!Cyclic  Redundancy Check: same idea!



CYCLIC BLOCK CODES

Example: For the systematic (7,4) Cyclic code with generator 
polynomial 31)( XXX ++=g

1. Find the codeword for the message

3   ,4   ,7 =−== knkn

)1011(=m
)(g

:(by)(Divide
)1()()(

1)()1011(
6533233

32

++=++==

++=⇒=

−

−

gm
mm

mm

X)XX
XXXXXXXXXX

XXX

kn

kn

:polynomialcodewordtheForm

1)1()1(
:(by )( Divide

)(remainder generator 

3

quotient 

32653

4342143421444 3444 21
++++++=++

gm

pgq

XXXXXXXX
X)XX

X(X)(X)

)1  1  0  1  0  0  1(
1)()()(

:polynomialcodeword  theForm

bitsmessagebitsparity 

6533

321321=
+++=+=

U
mpU XXXXXXX

gp y



EXAMPLE: ENCODING OF SYSTEMATIC CYCLIC 
CODES



Table 16.6Decoding cyclic codes

[ ]( ) mod ( ) / ( )s x r x g x=

( )g x



CYCLIC BLOCK CODES

2. Find the generator and parity check matrices, G and H, 
respectively.

⎥
⎥
⎤

⎢
⎢
⎡

=⇒⋅+⋅+⋅+=

0010110
0001011

)1101(),,,(1011)( 3210
32g ggggXXXX

Not in systematic form.

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

1011000
0101100
0010110

G We do the following:

row(4)row(4)row(2)row(1)
row(3)row(3)row(1)

→++
→+

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
0100111
0010110
0001011

G
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
1110100
0111010
1101001

H

⎥
⎦

⎢
⎣ 1000101

⎥⎦⎢⎣ 1110100

44×I
33×I TPP



CYCLIC BLOCK CODES

Syndrome decoding for Cyclic codes:
�Received codeword in polynomial form is given byReceived codeword in polynomial form is given by

�The syndrome is the reminder obtained by dividing the

)()()( XXX eUr +=Received 
codeword

Error 
pattern

�The syndrome is the reminder obtained by dividing the 
received polynomial by the generator polynomial. 

�With syndrome and Standard array, error is estimated.
)()()()( XXXX Sgqr += Syndrome

�In Cyclic codes, the size of standard array is considerably 
reduced. 



EXAMPLE OF THE BLOCK CODES

8PSK

 BP

QPSK

[dB]/ 0NEb



WELL-KNOWN CYCLIC CODES 

(n,1) Repetition codes. High coding gain, but low rate
(n,k) Hamming codes. Minimum distance always 3. Thus can detect 2 

errors and correct one error. n=2m-1, k = n - m, 
Maximum-length codes. For every integer            there exists a 

maximum length code (n,k) with n = 2k - 1,dmin = 2k-1. Hamming 
codes are dual of maximal codes.

BCH-codes. For every integer             there exist a code with n = 2m-1, 
d h t i th ti

3k ≥
3m ≥

and                      where t is the error correction 
capability

(n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of 
m bits that are encoded to yield code words of n symbols. For these 
codes

3≥m
≥ −k n mt 2 1≥ +d tcodes                                                                                   

and
BCH and RS are popular due to large dmin, large number of codes, and 

easy generation

≥k n mt
min 2 1≥ +d t

2 1 number of check symbols 2= − − =mn n k t 2 1= +d t2 1,number of check symbols  2n n k t min 2 1+d t



REED-SOLOMON CODES (RS)

Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits. 
Can tolerate burst error better (fewer symbols in error for a given bit-level burst event). 
� Shortened RS-codes used in CD-ROMs, DVDs etc



SHORTENED REED SOLOMON CODES

RS(N,K)RS(N,K)

0
0
0
0
0
0

Zeros (z) z

FEC (F =N-K)

0

Block
K = d + z

Block 
Size 
(N)

Data = d d



RS-CODE PERFORMANCE

Longer blocks, better performance
Encoding/decoding complexity lower for higher code rates (i.e. > ½ ): O{K(N-K)Encoding/decoding complexity lower for higher code rates (i.e. > ½ ): O{K(N K) 

log2N}.
5.7-5.8 dB coding gain @ BER = 10-5 (similar to 5.1 dB for convolutional codes, see 

later)



CONVOLUTIONAL CODES



BLOCK VS
CONVOLUTIONAL CODING 

(n,k) 
encoder

k bits n bits

CONVOLUTIONAL CODING encoder

(n,k) block codes: Encoder output k input bits

of 
n bits depends only on the k
input bits n output bitsinput bits 

(n,k,K) convolutional codes:

n output bits

input bit

( , , )
�each source bit influences n(K+1)

encoder output bits 
(K 1) i th t i t l th

n(K+1) output bits
�n(K+1) is the constraint length 
�K is the memory depth



BLOCK DIAGRAM: CONVOLUTIONAL CODING

Information
source

Rate 1/n 
Conv. encoder Modulator

21 ,...),...,,( immm=m = G(m)U
44 344 21

sequenceInput  

21 , ), ,,( i

444 3444 21

1

sequence    Codeword

321

 

,...),...,,,(

nijiii

i

,...,u,...,uuU

UUUU

=

= C
hannel

Information
sink

Rate 1/n 
Conv. decoder Demodulator

44 344 21
bits)  coded  ( rdBranch  wo 

1

n

nijiii , ,, ,

sink Conv. decoder
,...)ˆ,...,ˆ,ˆ(ˆ 21 immm=m

444 3444 21
sequence received

321 ,...),...,,,( i

Z

ZZZZ=Z

{ 4434421
 dBranch worper  outputs  

1

 dBranch worfor 
 outputsr Demodulato

 
n

nijii

i

i ,...,z,...,zzZ =



CONVOLUTIONAL CODES-CONT’D

A Convolutional code is specified by three parameters            
or    where

� is the coding rate, determining the number of data bits per coded bit.
� In practice usually k=1 is chosen and we assume that from now on)( Kkn )/( Knk� In practice, usually k=1 is chosen and we assume that from now on.

� K is the constraint length of the encoder a where the encoder has K-1
memory elements.

),,( Kkn ),/( Knk
nkRc /=



A RATE ½ CONVOLUTIONAL ENCODER

Convolutional encoder (rate ½, K=3)
�3 bit shift-register where the first one takes the incoming3 bit shift register where the first one takes the incoming 

data bit and the rest form the memory of the encoder. 

1u First coded bit

Input data bits Output coded bits

1

(Branch word)

2u Second coded bit



A RATE ½ CONVOLUTIONAL ENCODER

)101(=m
Time O t t

Message sequence:

O t tTi

1 0 0

1u

21 uu

Time Output
(Branch word)

0 1 0

1u

21 uu

OutputTime
(Branch word)

1 0 01t

2u
11 0 1 02t

2u
01

1 0 1t

1u

21 uu
0 1 0t

1u

21 uu
1 0 13t

2u
00 0 1 04t

2u
01



A RATE ½ CONVOLUTIONAL ENCODER 
(CONTD)( )

1u 1u

Time Output Time Output
(Branch word) (Branch word)

0 0 15t

2u
11

21 uu
0 0 06t

2u
00

21 uu

Encoder)101(=m )1110001011(=U

n = 2, k = 1, K = 3, , , ,
L = 3 input bits -> 10 output bits 



EFFECTIVE CODE RATE

Initialize the memory before encoding the first bit (all-zero)
Clear out the memory after encoding the last bit (all-zero)

f� Hence, a tail of zero-bits is appended to data bits.

data Encoder codewordtail
Effective code rate :
� L is the number of data bits and k=1 is assumed:

data Encoder codewordtail

ceff R
KLn

LR <
−+

=
)1(

Encoder)101(=m )1110001011(=U

Example: n = 2 k = 1 K = 3 L = 3 input bitsExample: n  2, k  1, K  3, L  3 input bits.
Output = n(L + K -1) = 2*(3 + 3 – 1) = 10 output bits 



ENCODER REPRESENTATION

Vector representation:

�We define n binary vector with K elements (one 
vector for each modulo 2 adder)vector for each modulo-2 adder). 
�The i:th element in each vector, is “1” if the i:th stage 

in the shift register is connected to the corresponding 
modulo-2 adder, and “0” otherwise.
�Example:

m

1u

uu
)111(1 =g

m

2u

21 uu)101(2 =g



ENCODER REPRESENTATION: IMPULSE 
RESPONSE

Impulse response representaiton:

�The response of encoder to a single “one” bit that goes 
th h itthrough it.
�Example:

Branch word
Register

01010
11100

001       :sequenceInput 
21 uu

Register
contents

11001
01010

111011 :sequenceOutput 

1110111
OutputInput m

1110111
0000000

1110111

1110001011
1110111

Modulo-2 sum:



ENCODER REPRESENTATION: POLYNOMIAL

Polynomial representation:

�We define n generator polynomials, one for each modulo-
2 adder. Each polynomial is of degree K-1 or less and 
describes the connection of the shift registers to the 
corresponding modulo-2 adder.corresponding modulo 2 adder.
�Example:

22)1()1()1( 1)( XXXXX ++++

The output sequence is found as follows:

22)2(
2

)2(
1

)2(
02

22)1(
2

)1(
1

)1(
01

1..)(

1..)(

XXgXggX

XXXgXggX

+=++=

++=++=

g

g

The output sequence is found as follows:

)()(with  interlaced )()()( 21 XXXXX gmgmU = )()()()()( 21 gg



ENCODER REPRESENTATION –CONT’D

In more details:

1)1)(1()()(

1)1)(1()()(
422

2

4322
1

+=++=

+++=+++=

gm

gm

XXXXX

XXXXXXXX

.0.0.01)()(

.01)()(
432

2

432
1

++++=

++++=

gm

gm

XXXXXX

XXXXXX

1110001011
)1,1()0,1()0,0()0,1()1,1()( 432

=
++++=

U
U XXXXX



STATE DIAGRAM

A finite-state machine only encounters a finite number of states. 
State of a machine: the smallest amount of information that, together with a 

current input to the machine, can predict the output of the machine.
In a convolutional encoder, the state is represented by the content of the 

memory.
Hence, there are         states. (grows exponentially w/ constraint length)

12 −K



STATE DIAGRAM – CONT’D

Current input Next outputCurrent 
state

input Next 
state

output

00
0 00
1 110S 0S

0S
1/11

0/00
Input

Output
(Branch word)

00 00 1 11

01
0 11
1 001S

2S

0S
SS

1/11

1/00

0/11

10 01

01 1 00

10
0 10
1 01

1

2S
2S

1S

1S2S

0/10

11

1 01

11
0 01
1 10

2

3S
3S
1S

3S1/01 0/01

3S
3S
1

1/10



TRELLIS – CONT’D

Trellis diagram is an extension of the state diagram 
that shows the passage of time.

f f f ½�Example of a section of trellis for the rate ½ code

State BranchState

000 =S

10S

0/00
1/11

Branch

011 =S

102 =S 0/11

0/101/01

1/00

1

113 =S 1/10
0/01

1/01

Timeit 1+it



TRELLIS –CONT’D

A trellis diagram for the example code
Input bits Tail bits

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits

1/11

0/00

1/11

0/00

1/11

0/00

1/11

0/00

1/11

0/00

0/11

0/101/01

1/00
0/11

0/101/01

1/00
0/11

0/101/01

1/00
0/11

0/101/01

1/00
0/11

0/101/01

1/00

0/01

1/01

0/01

1/01

0/01

1/01

0/01

1/01

0/01

1/01

6t1t 2t 3t 4t 5t



TRELLIS – CONT’D

1 0 1 0 0
Input bits Tail bits

0/00 0/00 0/00 0/00 0/00

1 0 1 0 0

11 10 00 10 11
Output bits

1/11 1/11

0/11

1/11

1/00
0/11 0/11

0/10

1/01 0/101/01

1/00

0/10

0/01 0/01

6t1t 2t 3t 4t 5t

Path through the trellis



OPTIMUM DECODING

If the input sequence messages are equally likely, the 
optimum decoder which minimizes the probability of 
error is the Maximum likelihood decoder.

ML decoder selects a codeword among all theML decoder, selects a codeword among all the 
possible codewords which maximizes the likelihood 
function                 where         is the received

)( )(mp ′U|Z
Z )(m′U

sequence and         is one of the possible 
codewords:
¾ML d di l

codewords 
L2

)(max)(  if    Choose )(

 allover 

)()( mmm pp
(m)

U|ZU|ZU
U

=′′

¾ML decoding rule: to search!!!



ML DECODING FOR MEMORY-LESS CHANNELS

Due to the independent channel statistics for memoryless 
channels, the likelihood function becomes  

∞∞ n

d i l tl th l lik lih d f ti b

∏∏∏
∞

= =

∞

=

===
1 1

)(

1

)()(
21,...,...,,

)( )|()|()|,...,...,,()(
21

i

n

j

m
jiji

i

m
ii

m
izzz

m uzpUZpUZZZpp
i

U|Z

and equivalently, the log-likelihood function becomes

∑∑∑
∞

= =

∞

=

===
1 1

)(

1

)()( )|(log)|(log)(log)(
i

n

j

m
jiji

i

m
ii

m uzpUZppm U|ZUγ

Bit metric

The path metric up to time index     , is called the partial path metric.

Path metric Branch metric Bit metric

""i

¾ML decoding rule:
Choose the path with maximum metric among  
all the paths in the trellis. 
This path is the “closest” path to the transmitted sequence.



AWGN CHANNELS

For BPSK modulation the transmitted sequence 
corresponding to the codeword         is denoted by             
where                                and
and

)(mU

Es ±=

),...,,...,( )()()(
1

)( m
ni

m
ji

m
i

m
i sssS =,...),...,,( )()(

2
)(

1
)( m

i
mmm SSS=S

and . 
The log-likelihood function becomes

cij Es ±=

>=<=∑∑
∞

)()()( m
n

mszm SZγ Inner product or correlation

�Maximizing the correlation is equivalent to minimizing the 

>=<=∑∑
= =

)(

1 1

)()(
i j

jiji szm SZ,Uγ between Z and S

g q g
Euclidean distance.

¾ML decoding rule:
Choose the path which with minimum Euclidean distanceChoose the path which with minimum Euclidean distance 
to the received sequence. 



THE VITERBI ALGORITHM

The Viterbi algorithm performs Maximum likelihood decoding.
It find a path through trellis with the largest metric (maximum 

correlation or minimum distance).
� It processes the demodulator outputs in an iterative 

manner. 
� At each step in the trellis, it compares the metric of all 

paths entering each state, and keeps only the path with 
the largest metric, called the survivor, together with its 

t i 1Kmetric.
� It proceeds in the trellis by eliminating the least likely 

paths.

12 −KL

It reduces the decoding complexity to !



THE VITERBI ALGORITHM - CONT’D

Viterbi algorithm:
A Do the following set up:A. Do  the following set up:

� For a data block of L bits, form the trellis.  The trellis has 
L+K-1 sections or levels and starts at time      and ends 
up at time

1t
tup at time          .

� Label all the branches in the trellis with their 
corresponding branch metric. 

� For each state in the trellis at the time which ist

KLt +

� For each state in the trellis at the time      which is  
denoted by                            , define a 
parameter (path metric)

B Then do the following:

it
}2,...,1,0{)( 1−∈ K

itS ( )ii ttS ),(Γ

B. Then, do the following:



THE VITERBI ALGORITHM - CONT’D

1. Set               and 
2. At time    , compute the partial path metrics for all 

the paths entering each state.
0),0( 1 =Γ t .2=i

tp g
3. Set                   equal to the best partial path metric 

entering each state at time     . 
Keep the survivor path and delete the dead paths 
from the trellis

it

( )ii ttS ),(Γ
tfrom the trellis.

4. If                  , increase    by 1 and return to step 2.  
C. Start at state zero at time        . Follow the 

surviving branches backwards through the trellis

it

surviving branches backwards through the trellis. 
The path thus defined is unique and correspond 
to the ML codeword.

KLi +< i
KLt +



EXAMPLE OF VITERBI DECODING

)101(=m
)1110001011(U )1110001011(=U
)0110111011(=Z

1/11

0/00

1/11

0/00

1/11

0/00 0/00 0/00

0/10

1/01

0/11

0/101/01

1/00
0/11

0/10

0/11

1/01

0/01

1/01

0/01

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

Label al the branches with the branch metric (Hamming distance)

)101(=m

( )ii ttS ),(Γ

)(
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 10

0

0

1
2

1

0

1

2
1

1
2

1

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

i=2

)101(=m )(
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 10 2

0

0

0

1
2

1

0

1
0

2
1

1
2

1

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

i=3

)101(=m )(
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 10 2 3

30

0

0

1
2

1

0

1

0

30

2
1

1
2

1
2

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

i=4

)101(=m )(
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 10 2 3 0

230

0

0
1 2

1

0

1

3

2

0

30

2
1

1
2

1
32

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

i=5

)101(=m
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 12 3 1

23

0

0

0

0

0
1 2

1

0

1

3

2

2

30

0

2
1

1
2

1
32

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

i=6

)101(=m )(
)1110001011(=U
)0110111011(=Z

0

2

1

1

0

2 1 10 2 3 0 1 2

230

0

0
1 2

1

0

1

3

2

20

30

2
1

1
2

1
32

6t1t 2t 3t 4t 5t



VITERBI DECODING-CONT’D

Trace back and then:

)100(ˆ =m
)101(=m

)1110001011(=U)100(=m
)0000111011(ˆ =U

)1110001011(=U
)0110111011(=Z

vs

0

2

1

1

0

2 1 10 2 3 0 1 2

230

0

0
1 2

1

0

1

3

2

20

30

2
1

1
2

1
32

6t1t 2t 3t 4t 5t



SOFT AND HARD DECISIONS
Hard decision: 
� The demodulator makes a firm or hard decision whether one or zero is 

transmitted and provides no other information reg. how reliable the 
decision is.
� Hence, its output is only zero or one (the output is quantized only to twoHence, its output is only zero or one (the output is quantized only to two 

level) which are called “hard-bits”.

Soft decision:
� The demodulator provides the decoder with some side information

together with the decisiontogether with the decision.
� The side information provides the decoder with a measure of confidence 

for the decision.
� The demodulator outputs which are called soft-bits, are quantized to more 

than two levels. (eg: 8-levels) 

Decoding based on soft-bits, is called the “soft-decision decoding”.
On AWGN channels, 2 dB and on fading channels 6 dB gain are 

obtained by using soft-decoding over hard-decoding!



PERFORMANCE BOUNDS …

Basic coding gain (dB) for soft-decision Viterbi decoding

2/13/1rateCodeUncoded

7687dB)(
/ 0

KP
NE

B

b

1.56.49.57.5106.9
8.35.34.42.4108.6

5

3

−

−

0.70.63.70.7boundUpper  
8.53.55.62.6103.11 7−



INTERLEAVING

Convolutional codes are suitable for memoryless 
channels with random error events.

Some errors have bursty nature:
St ti ti l d d i t�Statistical dependence among successive error events 
(time-correlation) due to the channel memory.
�Like errors in multipath fading channels in wireless p g
communications, errors due to the switching noise, …

“Interleaving” makes the channel looks like as a 
memoryless channel at the decoder.



INTERLEAVING …

�Consider a code with t=1 and 3 coded bits.
�A burst error of length 3 can not be corrected.A burst error of length 3 can not be corrected.

�Let us use a block interleaver 3X3
A1 A2 A3 B1 B2 B3 C1 C2 C3

2�Let us use a block interleaver 3X32 errors

A1 A2 A3 B1 B2 B3 C1 C2 C3

Interleaver

A1 B1 C1 A2 B2 C2 A3 B3 C3

DeinterleaverInterleaver

A1 B1 C1 A2 B2 C2 A3 B3 C3

Deinterleaver

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 error 1 error 1 error



CONCATENATED CODES



CONCATENATED CODES

A concatenated code uses two levels on coding, an inner code 
and an outer code (higher rate).

� Popular concatenated codes: Convolutional codes with Viterbi� Popular concatenated codes: Convolutional codes with Viterbi 
decoding as the inner code and Reed-Solomon codes as the 
outer code

Th i t d th ll l it t hi iThe purpose is to reduce the overall complexity, yet achieving 
the required error performance.

Interleaver ModulateInner 
encoder

C
h

Outer 
encoder

Input 
data

Deinterleaver Inner Demodulate

hannel

Outer Output 
d Deinterleaver

decoder
Demodulatedecoderdata



CONCATENATED CODES

Encoder-channel-decoder 
system C → Q → D can be 
viewed as defining aviewed as defining a 
super-channel Q’ with a 
smaller probability of 
error, and with complex 
correlations among its 
errors. 

We can create an encoder C’ 
and decoder D’ for this 

h l Q’super-channel Q’.



PRODUCT/RECTANGULAR CODES: 
CONCATENATION + INTERLEAVINGCONCATENATION + INTERLEAVING
Some concatenated codes make use of the idea of 

interleaving. g

Blocks of size larger than the block lengths of the 
tit t d C d C’constituent codes C and C’. 

� After encoding the data of one block using code C’,
�… the bits are reordered within the block in such a way that nearby bits 

are separated from each other once the block is fed to the second codeare separated from each other once the block is fed to the second code 
C. 

A simple example of an interleaver is a rectangular codeA simple example of an interleaver is a rectangular code
or product code in which …

�… the data: K2 x K1 rectangular block, and …
� encoded horizontally using an (N K ) linear code�… encoded horizontally using an (N1,K1) linear code, 
�… then vertically using a (N2,K2) linear code.



PRODUCT CODE EXAMPLE

(a) A string 1011 encoded using a concatenated code w/ two Hamming codes, H(3, 
1) ≡ Repetition code (R3) and H(7 4)1) ≡ Repetition code (R3) and H(7,4).

(b) a noise pattern that flips 5 bits. 
(c) The received vector.



PRODUCT CODES (CONTD)

(d) After decoding using the horizontal (3 1)(d) After decoding using the horizontal (3, 1) 
decoder, and

(e) after subsequently using the vertical (7; 4) 
decoder. 

The decoded vector matches the original.
Note: Decoding in the other order (weaker-

code-first) leads to residual error in this 
lexample:



PRACTICAL EXAMPLE: COMPACT DISC

“Without error correcting codes, digital audio 
would not be technically feasible ”

Channel in a CD playback system consists of a transmitting 
laser, a recorded disc and a photo-detector.

S f f t i d fi i t

would not be technically feasible.

Sources of errors are manufacturing damages, fingerprints or 
scratches

Errors have bursty like nature.
E ti d l t i d b iError correction and concealment is done by using a 

concatenated error control scheme, called cross-interleaver 
Reed-Solomon code (CIRC). 

Both the inner and outer codes are shortened RS codesBoth the inner and outer codes are shortened RS codes



COMPACT DISC – CIRC ENCODER

CIRC encoder and decoder:

Encoder

interleave
Δ

encode interleave encode interleave2C *D 1C D

deinterleave
Δ

decode deinterleave decode deinterleave2C *D 1C D

Decoder



ADAPTIVE MODULATION AND CODINGADAPTIVE MODULATION AND CODING



ADAPTIVE MODULATION

Just vary the “M” in the MQAM constellation to the 
appropriate SNR
Can be used in conjunction with spatial diversityCan be used in conjunction with spatial diversity



ADAPTIVE MODULATION/CODING: MULTI-USER

Exploit multi-user diversity. 
� Users with high SNR: use MQAM (large M) + high code rates

U i h l SNR BPSK l d (i h i )� Users with low SNR: use BPSK + low code rates (i.e. heavy error protection)

In any WiMAX frame, different users (assigned to time-frequency slots within a 
frame) would be getting a different rate!frame) would be getting a different rate!

� i.e. be using different code/modulation combos..



BASIS FOR ADAPTIVE 
MODULATION/CODING (AMC)MODULATION/CODING (AMC)

K-user system: the subcarrier 
of interest experiences i.i.d. 
Rayleigh fading: eachRayleigh fading: each 
user’s channel gain is 
independent of the others, 
and is denoted by hand is denoted by hk.



WIMAX: USES FEEDBACK & BURST PROFILES

Lower data rates are achieved by using a small constellation – such as 
QPSK – and low rate error correcting codes such as rate 1/2 
convolutional or turbo codes. 

The higher data rates are achieved with large constellations – such asThe higher data rates are achieved with large constellations such as 
64QAM – and less robust error correcting codes, for example rate 3/4 
convolutional, turbo, or LDPC codes.

Wimax burst profiles: 52 different possible configurations of modulation 
order and coding types and ratesorder and coding types and rates. 

WiMAX systems heavily protect the feedback channel with error 
correction, so usually the main source of degradation is due to 
mobility, which causes channel estimates to rapidly become obsolete.



AMC CONSIDERATIONS
BLER and Received SINR: In adaptive modulation theory, the 

transmitter needs only to know the statistics and 
instantaneous channel SINR. From the channel SINR, it can 
determine the optimum coding/modulation strategy and 
transmit power.transmit power. 

� In practice however, the BLER should be carefully monitored as 
the final word on whether the data rate should be increased (if the 
BLER is low) or decreased to a more robust setting.

Automatic Repeat Request (ARQ): ARQ allows rapid 
retransmissions and Hybrid ARQ generally increases theretransmissions, and Hybrid ARQ generally increases the 
ideal BLER operating point by about a factor of 10, e.g. from 
1% to 10%. 

� For delay-tolerant applications, it may be possible to accept a 
BLER approaching even 70%, if Chase combining is used in 
conjunction with HARQ to make use of unsuccessful packets.j p

Power control vs. Waterfilling: In theory, the best power control 
policy from a capacity standpoint is the so-called 
waterfilling strategy, in which more power is allocated to 
strong channels, and less power allocated to weak 
channels. In practice, the opposite may be true in some p pp y
cases. 



AMC VS SHANNON LIMIT

Optionally turbo codes or LDPC codes can be used instead of simpleOptionally turbo-codes or LDPC codes can be used instead of simple 
block/convolutional codes in these schemes



MAIN POINTS

Adaptive MQAM uses capacity-achieving power and rate 
adaptation, with power penalty K.

Ad ti MQAM ithi 5 6 dB f itAdaptive MQAM comes within 5-6 dB of capacity 

Discretizing the constellation size results in negligible 
f lperformance loss.

Constellations cannot be updated faster than 10s to 100s 
of symbol times: OK for most dopplersof symbol times: OK for most dopplers.

Estimation error and delay lead to irreducible error 
floors.floors.



TOWARDS THE SHANNON LIMIT!TOWARDS THE SHANNON LIMIT!
LDPC, TURBO CODES, DIGITAL FOUNTAINS



RECALL: CODING GAIN POTENTIAL

Gap-from-Shannon-limit:  
@BER=10-5

9.6 + 1.59 = 11.2 dB
( b t 7 8 dB if i t i

With convolutional code alone, @BER of 10-5, we require Eb/No of 4.5dB or

(about 7.8 dB if you maintain
spectral efficiency)

With convolutional code alone, @BER of 10 , we require Eb/No of 4.5dB or 
get a gain of 5.1 dB.

With concatenated RS-Convolutional code, BER curve ~ vertical cliff at an 
Eb/No of about 2.5-2.6 dB, i.e a gain of 7.1dB. 

We are still 11.2 – 7.1 = 4.1 dB away from the Shannon limit /We are still 11.2 7.1  4.1 dB away from the Shannon limit /
Turbo codes and LDPC codes get us within 0.1dB of the Shannon limit !! ☺



LOW-DENSITY PARITY CHECK (LDPC) CODES



LDPC



EXAMPLE LDPC CODE

A low-density parity-check matrix and the corresponding (bipartite) 
graph of a rate-1/4 low-density parity-check code with 
bl kl th N 16 d M 12 t i tblocklength N =16, and M =12 constraints. 

Each white circle represents a transmitted bit.
Each bit participates in j = 3 constraints, represented by squares.
Each constraint forces the sum of the k = 4 bits to which it isEach constraint forces the sum of the k = 4 bits to which it is 

connected to be even. 
This code is a (16; 4) code. Outstanding performance is obtained 

when the blocklength is increased to N ≈ 10,000.



TANNER GRAPH



A.K.A FACTOR GRAPH NOTATION



FACTOR GRAPHS
A factor graph shows how a function of several variables can be factored 

into a product of "smaller" functions. 
For example, the function g defined by g(x,y)=xy+x can be factored into 

g(x,y)=f1(x)f2(y) where f1(x)=x and f2(y)=y+1. 
The factor graph depicting this factorization: 

Graph for function g(x y z) = f (x y) f (y z) f (x z)Graph for function g(x,y,z) = f1(x,y) f2(y,z) f3(x,z). 

Why Factor graphs?
1. Very general: variables and functions are arbitrary
2. Factorization => Sum-Product Algorithm can be applied
3. Third, many efficient algorithms are special cases of the Sum-Product 

Algorithm applied to factor graphs:
� FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward Algorithm, 

Kalman Filter and Bayesian Network Belief Propagation. 
� Brings many good algorithms together in a common framework� Brings many good algorithms together in a common framework. 



LDPC CODING CONSTRUCTIONS



LDPC DECODING: ITERATIVE



REGULAR VS IRREGULAR LDPC CODES



IRREGULAR LDPC CODES



TURBO CODES



TURBO CODES



TURBO ENCODER

The encoder of a turbo code. 
Each box C1 C2 contains a convolutional codeEach box C1, C2, contains a convolutional code. 
The source bits are reordered using a permutation π before they 

are fed to C2. 
The transmitted codeword is obtained by concatenating orThe transmitted codeword is obtained by concatenating or 

interleaving the
outputs of the two convolutional codes. 
Th d t ti i h h th d i d i dThe random permutation is chosen when the code is designed, 

and fixed thereafter.



TURBO: MAP DECODING





TURBO CODES: PERFORMANCE… 



UMTS TURBO ENCODER



WIMAX: CONVOLUTIONAL TURBO CODES (CTC)



DIGITAL FOUNTAIN ERASURE CODES



WHAT IS A DIGITAL FOUNTAIN?

A digital fountain is an ideal/paradigm for data transmission.
� Vs. the standard (TCP) paradigm:  data is an ordered finite sequence of bytes.

Instead, with a digital fountain, a k symbol file yields an infinite data stream 
(“fountain”);  once you have received any k symbols from this stream, 
you can quickly reconstruct the original file.     



HOW DO WE BUILD A DIGITAL FOUNTAIN?

We can construct (approximate) digital fountains using 
erasure codes.

� Including Reed-Solomon, Tornado, LT, fountain codes.
Generally, we only come close to the ideal of the 

paradigmparadigm.
�Streams not truly infinite;  encoding or decoding times;  

coding overhead.



FORWARD ERROR CORRECTION (FEC): 
EG  REED SOLOMON RS(N K)EG: REED-SOLOMON RS(N,K)

RS(N,K) >= K of N
received

Recover K 
data packets!

FEC (N K)FEC (N-K)

Block 
Size k

Data = K

Size 
(N)

Lossy Network

High Encode/Decode times: O{K(N-K) log2 N}.
Hard to do @ very fast line rates (eg: 1Gbps+). 



DIGITAL FOUNTAIN CODES (EG: RAPTOR 
CODES)CODES)

>= K+ε
received

Recover K 
data packets!

Rateless: No Block Size !Rateless: No Block Size !
“Fountain of encoded pkts”

Compute on demand!…

Data = K …

Lossy Network
Low Encode/Decode times: O{K ln(K/δ)} 

w/ probability 1- δ. Overhead ε ~ 5%.
C b d b ft & @ f t ( 1Gb +)Can be done by software & @ very fast (eg: 1Gbps+). 



RAPTOR/RATELESS CODES

Properties: Approximately MDS
� “Infinite” supply of packets possible.
�Need k(1+ε) symbols to decode, for some ε > 0.
�Decoding time proportional to k ln (1/ε).

O l (1/ ) ( t t) ti t d�On average, ln (1/ε) (constant) time to produce an 
encoding symbol.

Key: Very fast encode/decode time compared to RS 
codes

�Compute new check packets on demand!

B tt li th d b d ffi i tBottomline:  these codes can be made very efficient 
and deliver on the promise of the digital fountain 
paradigm.



DIGITAL FOUNTAIN ENCODER/DECODER

Encoder:

� Decoder:



DIGITAL FOUNTAIN DECODING (EXAMPLE)

Received bits: 1011

� t1 is of degree 1, s1 = t1 = 1

� t2 & t3 XOR’ed w/  s1 = 1. 

First such code 
called “Tornado” code.
Later: LT-codes; 
C d iRemove s1’s edges

� s2 set to  t4 = 0 {degree = 1}

Concatenated version:
“Raptor code”

� Repeat as before; s3 = 1p f 3



ESOTERICS: ROBUST SOLITON DEGREE 
DISTRIBUTIONDISTRIBUTION



APPLICATIONS: RELIABLE MULTICAST

Many potential problems when multicasting to large 
audience. 

� Feedback explosion of lost packets.p p
� Start time heterogeneity.
� Loss/bandwidth heterogeneity.
A digital fountain solves these problems.A digital fountain solves these problems.
� Each user gets what they can, and stops when they have 

enough: doesn’t matter which packets they’ve lost
� Different paths could have diff. loss rates



APPLICATIONS: DOWNLOADING IN PARALLEL

Can collect data from multiple digital fountains for 
the same source seamlesslythe same source seamlessly.

� Since each fountain has an “infinite” collection of packets, no 
duplicates.
� Relative fountain speeds unimportant; just need to get enough� Relative fountain speeds unimportant;  just need to get enough.  
� Combined multicast/multi-gather possible.

Can be used for BitTorrent-like applications.
�Microsoft’s “Avalanche” product uses randomized linear codes to 

do “network coding”
�http://research.microsoft.com/~pablo/avalanche.aspx
� Used to deliver patches to security flaws rapidly; Microsoft Update 

dissemination etc



Single path: limited capacity, delay, loss…

L

High Delay/Jitter

Low 
Capacity

Lossy

TiTimeNetwork paths usually have:
• low e2e capacity, 
• high latencies and• high latencies and 
• high/variable loss rates.



IDEA: AGGREGATE CAPACITY, USE ROUTE 
DIVERSITY!

Low Perceived
Loss

High Perceived

L P i d D l /Jitt

High Perceived
Capacity

Scalable Performance Boost with ↑Low Perceived Delay/JitterScalable Performance Boost with ↑ 
Paths



MULTI-PATH LT-TCP (ML-TCP): STRUCTURE

Socket 
Buffer

Map pkts→paths intelligently
based upon Rank(pi, RTTi, wi)

Per-path congestion control
Reliability @ aggregate, across paths
(FEC block = weighted sum of windows,

PFEC based upon weighted average loss rate)

p g
(like TCP)

Note: these ideas can be applied to other link-level multi-homingNote: these ideas can be applied to other link-level multi-homing, 
Network-level virtual paths, non-TCP transport protocols (including video-streaming)



SUMMARY

Coding: allows better use of degrees of freedom
�Greater reliability (BER) for a given Eb/No, or
� Coding gain (power gain) for a given BER.

E @ BER 10 5� Eg: @ BER = 10-5: 
� 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional)
�Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes)

�Magic achieved through iterative decoding (belief propagation) in bothMagic achieved through iterative decoding (belief propagation) in both 
LDPC/Turbo codes
�Concatenation, interleaving used in turbo codes

� Digital fountain erasure codes use randomized LDPC constructions as 
wellwell. 

Coding can be combined with modulation adaptively in response 
to SNR feedback

Coding can also be combined with ARQ to form Hybrid ARQ/FECCoding can also be combined with ARQ to form Hybrid ARQ/FEC 
Efficient coding schemes now possible in software/high line rates 

=> they are influencing protocol design at higher layers also: 
� LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent, g ( )

Network coding in Avalanche (Microsoft Updates) etc


