PERFORMANCE OF CODES



CONTEXT: TIME DIVERSITY

Time diversity can be obtained by interleaving and
coding over symbols across different coherent time
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WHAT IS CHANNEL CODING?

Transforming signals to improve communications performance
by increasing the robustness against channel impairments
(noise, interference, fading, ..)

= |t is a time-diversity technique, but can be broadly thought of as
techniques to make better use of the degrees-of-freedom in
channels (eg: space-time codes)

Waveform coding: Transforming waveforms to better waveforms

Structured sequences: Transforming data sequences into better
sequences, having structured redundancy.

= “Better” in the sense of making the decision process less subject to
errors.

= Introduce constraints on transmitted codewords to have greater
“distance” between them




(MODIFIED) BLOCK DIAGRAM
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CHANNEL CODING SCHEMES:
BLOCK, CONVOLUTIONAL, TURBO




CODING GAIN: THE VALUE OF CODING...

= Error performance vs. bandwidth

= Power vs. bandwidth

= Data rate vs. bandwidth

= Capacity vs. bandwidth P,

Coding gain:

For a given bit-error probability,

the reduction in the Eb/NO that can be
realized through the use of code:

G [dB] =(%j [dB]—(%j [dB]

0 0




CODING GAIN POTENTIAL

Symbol error perfromance of M-ary PAM

e

Symbol error probability: P_(M)

: i :
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E /N, [dB]




THE ULTIMATE SHANNON LIMIT

Goal: what is min Eb/No for any spectral efficiency
(p—0)?

Spectral efficiency p = B/W =log, (1 + SNR)
where SNR = E_/N_,where E,=energy per symbol
=Or SNR =(2r - 1)

2 Eb/No = Es/No * (W/B)

\\i P N




BINARY SYMMETRIC CHANNEL (BSC)
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RELIABLE DISK DRIVE APPLICATION

We want to build a disk drive and write a GB/day for 10
years.

==> desired BER: 10-1°

Physical solution: use more reliable components,
reduce noise

System solut Source. * f act/correct
errors (eng . l ‘ , » channels)
5
Encoder Decoder

t ‘ Noisy

channel




REPETITION CODE (R3) & MAJORITY VOTE DECODING

Source Transmitted
sequence sequerce
5 t source message s=0010110
0 000
1 111
s 0 0 1 0 1 1 0
e T e e T s S
t 000 000 111 OO0 111 111 00O
AWGN n 000 001 000 000 101 000 0O0O0
r 000 001 111 000 010 111 000
Algorithm 1.9. Majority-vote
Received sequence r  Likelihood ratio Pglfi [1}) Decoded sequence s decoding algorithm for Ry. Also
. shown are the likelihood ratios
000 T_j 0 (1.23), assuming the channel is a
001 ,}_,—1 0 binary symmetric channel;
010 A1 0 y=(1-f)/f
100 AL 0
101 o 1
110 ! 1
011 o 1
111 o 1

o= =)

is greater than 1, since f < 0.5, so the winning hypothesis is the
one wit{'z the most “votes’, each vote counting for a factor of % in the likelihood
ratio.




PERFORMANCE OF R3
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corrected errors i

undetected errors *

ENCODER t CHANNEL r DECODER é
f=10%

- B

The error probability 1s domlnated by the probability that two bits in
a block of three are flipped, which scales as f 2.

For BSC with f= 0.1, the R3 code has a probability of error, after
decoding, of p, = 0.03 per bit or 3%.

Rate penalty: need 3 noisy disks to get the loss prob down to 3%. To
get to BER: 10°15, we need 61 dlsks'

e 10000

f=10%
nd the
ilgorithm.
led bit
3%: the

LE b = e e e = S LS G



CODING: RATE-BER TRADEOFF?

s 0 0 1 0 1 1 0
41 et T et U et N e N
Repetltlon t 000 000 111 000 111 111 000
. n 000 001 000 000 101 000 000
code R3: r 000 001 111 000 010 111 000
e = L e Y I Wi

S 0 0 1 0 0 1 0

CDI'I'eCtEd errors +

undetected errors *




HAMMING CODE: LINEAR BLOCK CODE

A block code is a rule for converting a sequence of source
bits s, of length K, say, into a transmitted sequence t of
length N bits.

In a linear block code, the extra N-K bits are linear functions
of the original K bits; these extra bits are called parity-
check bits.

(7, 4) Hamming code: transmits N = 7 bits for every K =4
source bits.
= The first four transmitted bits, t,t,t;t,, are set equal to the four
source bits, $,5,5;S,.
= The parit
circle (se«

yarity within each




HAMMING CODE: (CONTD)

s t s t s t s t Tabe 1.14. The sixteen codewords
{t} of the (7,4) Hamming code.

0000 0000000 0100 0100110 1000 1000101 1100 1100011 Any pair of codewords differ from
0001 0001011 €101 0101101 1001 1001110 1101 1101000 EEtCLh other in at least three hits.

0010 0010111 (110 0110001 1010 1010010 1110 1110100
0011 0011100 €111 0111C10 1011 1011001 1141 1111111

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as fallows. The transmitted codeword t is obtained from the

PE)
[
.

L t=GTs, (1.25)

R
", .
------
-------------

..........
L]
L]
.
3

...............
.
[ 3s ",y

J1 0 0 07
1o 1 0 0"
.o 0 1 o]
GT="10 0 0 1.4 (1.26)
1 ..... i ..... 1 0
01 1 1
10 1 1




HAMMING CODE: SYNDROME DECODING

If channel is BSC and all source vectors are equiprobable, then...

= ... the optimal decoder identifies the source vector s whose encoding
t(s) differs from the received vector r in the fewest bits.

= Similar to “closest-distance” decision rule seen in demodulation!

Can we do it more efficiently? Yes: Syndrome decoding




SYNDROME DECODING (CONTD)

Can we find a unique bit that lies inside all the "'unhappy’ circles and
outside all the "happy’ circles?

= If so, the flipping of that bit would account for the observed syndrome.

Syndrome z 000 001 010 o011

Unflip this bit  none 77 re T4




HAMMING CODE: PERFORMANCE

A decoding error will occur whenever the noise has flipped more
than one bit in a block of seven.

The probability scales as O(f 2), as did the probability of error for
the repetition code R3; but Hamming code has a greater rate, R

= 4/7.

Dilbert Test: About 7% of the decoded bits are in error. The residual
errors are correlated: often two or three successive decoded

[ JL IPIRY | | BRI
S ENCODER t CHANNEL r DECODER g

f=10%
REDUNDAN REDUNDAN
" GLASS. g "' g
he —F _ - _
.-'--'."I1I f._ _‘,\1 Il-
| . Ny

parity bits

— - k=1

Figure 1.17. Transmitting 10000
source bhits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.




SHANNON'S LEGACY: RATE-RELIABILITY OF
CODES
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theorem:
defines
achievable
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Note: you can
get BER as
low as
desired by

he equation defining the
Shannon limit (the solid curve) is
R=C/(1— Ha(py)l, where C' and
H, are defined in equation (1.35).



SHANNON LEGACY (CONTD)
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The maximum rate at which communication is possible
with arbitrarily small p, is called the capacity of the

channel. C(p=1-Ha(r)=1- [flogz%ﬂl—f)logz %] ¥

-

‘What performance are you trying to achieve? 1077 You don’t
need sirty disk drives — you can get that performance with just

two disk drives (since 1/2 is less than 0.53). And if you want
m, = 1071 or 1072% or anything, you can get there with two disk

drives too!’




CAVEATS & REMARKS

Strictly, the above statements might not be quite right:
Shannon proved his nois -?hﬁ?nel coding theorem by
ﬁ des Wlﬁ‘l

studying sequences of block c ever-
A LT i e TS e lestor

~ Jo H WithThoge Ly aik dives, But' i yol hadiwo
aagjﬁ terat)%teggyi%g,f\{ou C ufd,make a smgle ‘ngh-

om them'.
Infcﬂ'mationt eo afldresses both the limitations and
the possibilitieS of communication.

= Reliable communijcation at rate beyond the capacit
!-\s)lmpos&gr,g, and tha; re?lagpg comm_%_ru Ication at a?l rates
up to capacity Is possible.




GENERALIZE: LINEAR CODING/SYNDROME
DECODING

The first four received bits, r,r,r,r,, purport to be the four
source bits; and the received bits r:r.r; purport to be the
parltlesGof the source bits, as deflne(i by the generator
matrix

= Evaluate the three parity-check bits for the received bits, rrorar,,
and see whether they match the three received bits, rsrgr.

The differences (modulo 2) between these two triplets are
called the syndrome of the received vector.

= |f the syndrome is zero then the received vector is a codeword,
and the most probable decoding is given by reading out its first
four bits.

= |f the syndrome is non-zero, then the noise sequence for this block
was non-zero, and the syndrome is our pointer to the most

probable error pattern.




LINEAR CODING/SYNDROME DECODING
(CONTD)

1 O O O | e
i dg: _ T 01 00
Coding: t=Gs, 0 01 0 GT:[Idl
G is the generator matrix of the code G' =] 0 0 0 1 P
1 1 1 0 FEsmEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
0O 1 1 1
i 1 0 1 1 |

probable noise vector n satisfying the equation

the parity-check matrix H is given by H = [ —P I3 ]

i wmodulo 2 arithimetic. —1 =L sol{ 1 _ [ p 13]—[




SOME DEFINITIONS

Binary field :
The set {0,1}, under modulo 2 binary addition and multiplication forms a field.

Binary field is Ad1H9Med Galois fiefyldiipication

0D0=0 0-0=0

1®1=0 1-1=1




DEFINITIONS: FIELDS

Fields :
= Let F be a set of objects on which two operations ‘+’
and “." are defined.
= F is said to be a field if and only if

1. F forms a commutative group under +
operation. The additive identity element is
labeled “0”.

VapbeF=a+b=b+acF
2. F-{0} forms a commutative group under.

operation. The multiplicative identity element is
labeigd clF.— a-b=b-aeF




DEFINITIONS: VECTOR SPACE OVER FIELDS

Vector space: (note: it mixes vectors and scalars)
= LetV be a set of vectors and F a fields of elements
called scalars. V forms a vector space over F if:

1.
2,
3.

4,
5.

Commutative:
Closure: Vu,veV u+v=v+ueF
Distributive:

VaeF,VveV=a-v=ueV
Associative:

Identity Element:

(a+b)-v=a-v+b-v and a-(u+v)=a-u+a-v




VECTOR SPACES, SUBSPACES

Examples of vector spacesg,
= The set of binary n-tuples, denoted by

V, = {(0000),(0001),(0010),(0011),(0100),(0101),(0111),
(1000),(1001),(1010),(1011),(1100),(1101),(1111)}

Vector subspace:

= A subset S of the vector space Vv is called a subspace
if: "

=Zero: The all-zero vector is in S.




SPAN, BASES...

Spanning set:
= A collection of vectors G= LVJ, Voseet,y Vn}

the linear combinations of which include all vectors in a
vector space V, is said to be a spanning set for V or to

span V.
=Example:

{(1000),(0110),(1100),(0011),(1001)} spans V,.

Bases:

= A spanning set for V that has minimal cardinality is
called a basis for V.




LINEAR BLOCK CODES ARE JUST SUBSPACES!

Linear block code (n,k)
= A set with cardinality is called a linear block ci?de if, and only if, itis a

subspace of the/e&ovsnpace : 2

Vn

Members of C are called codewords.

The all-zero codeword is wdwr@ - V

Any linear combination|of cdde-words is a cfdewo d.

o




LINEAR BLOCK CODES - CONT'D

mappin V

[ Bases of C ]




LINEAR BLOCK CODES - CONT'D

The information bit stream is chopped into blocks of k bits.
Each block is encoded to a larger block of n bits.

The coded bits are modulated and sent over channel.

The reverse procedure is done at the receiver.

Channel

Data block I encoder — Codeword

. T
k bits n bits




RECALL: REED-SOLOMON RS(N,K): LINEAR ALGEBRA
IN ACTION...
Recover K

>=Kof N
RS(N,K) received data packets!

r'y

Block
Size

N)

—

[ ]
FEC (N-K) |
—> .




LINEAR BLOCK CODES - CONT'D

The Hamming weight (w) of vector U, denoted by w(U),
is the number of non-zero elements in U.

The Hamming distance (d) between two vectors U and
V, is the number of elements in which they differ.

The minimum distance of a block code is
d(U,V)=w(UDYV)




LINEAR BLOCK CODES - CONT'D

Error detection capability is given by

e:dmin o

Error correcting capability t of a code, which is

defined as the maximum number of guaranteed
correctable error:[ per codeword, is

min




LINEAR BLOCK CODES -CONT'D




LINEAR BLOCK CODES - CONT'D

Encoding in (n,k) block code

U=mG
/ N

= The rows of @Jg;blygearhljnaép{rm@nmz se ey mk) )

(U,U,,...,u)=m -V, +m,-V,+...+m, -V,




LINEAR BLOCK CODES - CONT'D

Example: Block code (6,3)

(110100
011010

Message vector

Codeword

1101001 |

000
100
010
110
001
101

000000
110100
011010
101110
101001
011101



SYSTEMATIC BLOCK CODES

Systematic block code (n,k)
= For a systematic code, the first (or last) k elements in the codeword are information bits.

G=[P:I]
I, =kxk identity matrix
P, =kx(n—Kk) matrix




LINEAR BLOCK CODES - CONT'D

For any linear code we can find an mat
which its rows are orthogogal to rows ofk

GH' =0

Why? H checks the parity of the received word (i.e.
maps the N-bit word to a M-bit syndrome).
= Codewords (=mG) should have parity of O (i.e. null-
space).

H is called the parity check matrix and its rows are
linearly independent.




LINEAR BLOCK CODES - CONT'D

4 N
Data source Format m Chanl}el Y Modulation
. y encodlng
channel
4 N -
Data sink Format Chanflel emodul.atloﬂJ
¢ J m decodlng r Detection
r=U-+e

Syndrome testing:

=S is syndrome of r, corresponding to the error pattern e.




LINEAR BLOCK CODES - CONT'D

Error pattern Syndrome

000000 000 U=(101110) transmitted.

000001 101 r=(001110) 1sreceived.

000010 011 | -ooo--io-eeesieeoooo frooooe

000100 110 m The syndrome of r is computed :

001000 001 S=rH' =(001110)H" =(100)

010000 010 m Error pattern corresponding to this syndromeis
100000 100 & — (100000)

010001 111

The corrected vector is estimated




STANDARD ARRAY: ERROR PATTERNS

Example: Standard array for the (6,3) code

000000

110100

011010

codewords

101110

\

101001

011101

110011

000111

000001
000010
000100
001000
010000
100000
010001

--------------
llllllllllllll
lllllllllllll

110101
110110
110000
111100
100100
010100
100101

011011
011000
011110

101111
101100
101010

101000
101011
101101

011100
011111
011010

110010
110001
110111

000110
000101
000110

Coset:
Error pattern +
codeword

010110



LINEAR BLOCK CODES - CONT'D

Standard array

1. Forrow . , find a vector | of
minimum! We?gﬁt-mﬁ%gﬁk IS not already IisteS/ n the array.
2. Call this error pattern  and form the row as the
corresponding cosefi |:th
Z€T0
codeword\\U1 U P s U ok

coset




LINEAR BLOCK CODES - CONT'D

Standard array and syndrome table decoding
1. Calculate syndromg = yH”
2. Find the coset leadeg —o , corresponding;to
3. Calculate j . and c':orrespond'mg

Note that

If , error i rrected. A
If undetﬁbre !‘ec‘:bo%g-er(ouc'&‘uﬁ) + e U T (e T e)




HAMMING CODES

Hamming codes

= Hamming codes are a subclass of linear block codes and
belong to the category of perfect codes.

*Hamming codes are expressed as a function of a single
integer m > ,2i.e. n and k are derived from m:

Code length : n=2"-1
Number of information bits: k=2" —-m-1
Number of parity bits : n-k =m

Error correction capability: t=1




HAMMING CODES

Example: Systematic Hamming code (7,4)

10 0{0 1 11
H=(0 1 0{1 0 1 1|=[I,,! P"]

00 1:1 101

01 1:1 0 0 O
G:10150100:[1)51]
00 ( 0 4




CYCLIC BLOCK CODES

Cyclic codes are a subclass of linear block codes.
Encoding and syndrome calculation are easily performed using feedback
shift-reqgisters.

= Hence, relatively long block codes can be implemented with a reasonable
complexity.

BCH and Reed-Solomon codes are cyclic codes.




CYCLIC BLOCK CODES

A linear (n,k) code is called a Cyclic code if all cyclic shifts of a codeword are
also a codeword.

(13

! - i” cyclic shifts of U
. U o (u09u19u29°"9un—1) ]\

CpT()
L U" = (un—iaun—i+19'“9un—19u09u19u2""’un—i_l)]

OExample:




CYCLIC BLOCK CODES

Algebraic structure of Cyclic codes, implies expressing
codewords in polynomial form

[U(X) =y +U, X +U, X7 +..+U, X" degree (n-1) |

0 Relationship between a codeword and its cyclic shifts:
XU(X)=UX +u,X*+..,u X" +u X"

=Uu_, +UX+UX*+. . +Uu X" +u X"+u_

/ o /

U (x) Upg (X" +1)

=UP(X)+u_ (X" +1)
UY(X) = XU(X)modulo (X" +1)



CYCLIC BLOCK CODES

Basic properties of Cyclic codes:

- Let C be a binary (n,k) linear cyclic code
1. Within the set of code polynomials in C, there is a unique monic
polynomial with minimal degree is called the
generator polynomials.
2. Every code polynomial in C, can be expressed uniqgﬁ%é
3. The generator polynomial is arf%t?[ozg( X )

g(X)=9g,+9,X+..+9, X’




CYCLIC BLOCK CODES

4. The orthogonality of G and H in polynomial form is expressed as

This means is also a factor of
g(X)h(X)=X"+1

5. Therow o{ erator matrix is formed by the goefficients
of the cyclic srh c?ft;e generator polynomial. 32 + f

"i—1"




CYCLIC BLOCK CODES

Systematic encoding algorithm for an (n,k) Cyclic code:

1. Multiply the message polynomial by

n—k
2. Divide the result of Step 1 by th%é‘?erato?(
polynomial . Let be the reminder.

3. Add g6X) P(X o form the codeword

P(X) X" *m(X) U(X)




CYCLIC BLOCK CODES

Example: For the systematic (7,4) Cyclic code with generator

poly.nomial g(X)=1+ X+ X :
1. Find the codeword for the messagi?1 =(1011)




EXAMPLE: ENCODING OF SYSTEMATIC CYCLIC
CODES

Encode 1011 in systematic form in the (7, 4) code

Solution

(1) d(x)=1+x*+x°

) X" Fd(x) =x>+x° +x°

3) P tx+1
x3+x+l)x6+x5+ x?

xﬁ + x4 + x3
x +x*
X + x4+ X
. : PRI
(1) Express the data d in polynomial form, as d(x).
(2) Multiply d(x) by x"~* (equivalent to shifting the data bits to the right-hand P x4 x
end of the codeword. E 4x
(3) Divide the result by g(x), and take the remainder r(x).
(4) Form the codeword polynomial as: X +x+1
e(x) = r(x) + x""Fd(x) (6.10) 1

= r(x)=1orr=100
@) c(x) =r(x)+ X" Fdx) =14+ + ¥ + x5 = ¢ =rd = 1001011

which is systematic, although the data word is found at the end of the code-
word, rather than at the beginning. The same data, encoded using the generator
matrix of (6.1), would yield the codeword 1011100.




Decoding cyclic codes

110
011
111
101
100
010
001

c

e
_ 1000000
When the received word r 1s 1101101, 0100000
s 3 ) 0010000
r(x) = x4+ x° + x> +x°+1 0001000
0000100
S(X) = dlr(x)/o(x 0000010
We now compute S(X) =mo [ (X)/g( )] pon0n
X
x3+x2+1) O x4+ x4
x84+ x4+ X3 Table 16.5
g(x) x* 4+ 1 d
Hence, s = 101. From Table 16.6, this gives e = 0001000, and o
1101
c=r®e=1101101 & 0001000 = 1100101 :(1}‘:‘1’
1010
Hence, from Table 16.5 we have 1001
1000
d = 1100 0111

In a similar way, we determine for r = 0101000, s = 110 and e = 1000000; hence
c=r @&e = 1101000, and d = 1101. For r = 0001100, s = 001 and e = 0000001;

hence ¢ = r @ e = 0001101, and d = 0001.

1111111
1110010
1101000
1100101
1011100
1010001
1001011
1000110
0111001




CYCLIC BLOCK CODES

2. Find the generator and parity check matrices, G and H,
respectively.




CYCLIC BLOCK CODES

Syndrome decoding for Cyclic codes:
= Received codeword in polynomial form is given by

Received /l'(x )=U(X)+e(X)—, Error
codeword pattern

= The syndrome is the reminder obtained by dividing the
received polynomial by the generator polynomial.

r(X) =q<><>g(><)mme
= With syndrome ana Stanaara array, error is estimated.




EXAMPLE OF THE BLOCK CODES

100 :

Y —— ncoded
10 S | ===+ Hamming(7,4)

Fore g ----- Hamming(15’11)

.......................




WELL-KNOWN CYCLIC CODES

(n,1) Repetition codes. High coding gain, but low rate

(n,k) Hamming codes. Minimum distance always 3. Thus can detect 2
errors and correct one error. n=2"-1, k =n - m,

Maximum-length codes. For every integer tge%e exists a
maximum length code (n,k) with n = 2k - 1,dmrirn‘ =21, Hamming
codes are dual of maximal codes. k>3

BCH-codes. For every integer there exist a code with n = 2™M-1,
and where t is the error correction
capability
(n,k) Reed-Solomon (RS) codedN\Warks with k symbols that consists of
k> %%g&tthat aai:gczfi_ei_ci to yield code words of n symbols. For these

and
BCH and RS are popular due to large d,;;,, large number of codes, and

n = 222asy gengtaliofr check symbols n—k = 2t d =2t+1

min




REED-SOLOMON CODES (RS)

N

10°

RS (236,192)

Y

AN

7

107

N
::'w--rR i gumgu
£ " T o
boft limite \ hard ks

-
Y
3

A 10

|

10

1 2 3 4 5 6 7 8
SKR (EbNo) (dB)

Fig. 3. RS Code versus Convolutional Code.




SHORTENED REED SOLOMON CODES

RS(N,K) RS(N,K)
'y

0
0
; Zeros (z) z
0
0

FEC(F=N-K) K=d+z

Block
Size

N)




RS-CODE PERFORMANCE

Random Channel Bit Error Rate
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CONVOLUTIONAL CODES




BLOCK VS cbits [ nbits
CONVOLUTIONAL CODING encoder

(n,k) block codes: Encoder output  kinput bits

+—>

of
n bits depends only on the k m

>

in pUt bits n output bits
input bit

(n,k,K) convolutional codes:




BLOCK DIAGRAM: CONVOLUTIONAL CODING

Information Rate 1/n
source / Conv. encoder

/ Modulator

m = (M, m,,...,M;,.... U =G(m)
Input ;gquence :£U19U29U39'"9Ui9~"2

Codeword sequence

U = ug..U u

i s Uiy Uy

Branch word (n coded bits)

Information Rate 1/n Demodulator
sink / Conv. decoder /

R




CONVOLUTIONAL CODES-CONT'D

A Convolutional code is specified by three parameters
where

or
. is the codi rate,&ejermining the number of data bits per coded bit.
(nﬂ'khﬂ Mtice, usuilﬁa:ﬂis sen and we assume that from now on.

= KE' the ¢ int length of the encoder a where the encoder has K-1

ory ts.




A RATE %2 CONVOLUTIONAL ENCODER

Convolutional encoder (rate 2, K=3)

= 3 bit shift-register where the first one takes the incoming
data bit and the rest form the memory of the encoder.

U, *{ First coded bit
([ ]

(Branch word)
Input data bits ——— Output coded bits




A RATE %2 CONVOLUTIONAL ENCODER

Time Output Time Output

ul ul
t —{1J0]0 \§—>1 0 \§—>1

S o

-
[\
—
N
-
—
[




A RATE %> CONVOLUTIONAL ENCODER
(CONTD)

Time ( Ou‘g)ut dp Time ( Ol}lltPUt 9
Branch wor Branch wor

S S

N . |




EFFECTIVE CODE RATE

Initialize the memory before encoding the first bit (all-zero)

Clear out the memory after encoding the last bit (all-zero)
= Hence, a tail of zero-bits is appended to data bits.

data tail —  Encoder H— codeword
tfective code rate :

= L is the number of data bits and k=1 is assumed:




ENCODER REPRESENTATION

Vector representation:

=\We define n binary vector with K elements (one
vector for each modulo-2 adder).

= The i:th element in each vector, is “1” if the i:th stage
in the shift register is connected to the corresponding
modulo-2 adder, and “0” otherwise.

=Example:

§
g, =(11) d l




ENCODER REPRESENTATION: IMPULSE
RESPONSE

Impulse response representaiton:

= The response of encoder to a single “one” bit that goes
through it.

*Example:

Branch word

Register
contents u1 uz

100

Inputsequence: 1 0 0

Output sequence: 11 10 11




ENCODER REPRESENTATION: POLYNOMIAL

Polynomial representation:

=\We define n generator polynomials, one for each modulo-
2 adder. Each polynomial is of degree K-1 or less and
describes the connection of the shift registers to the
corresponding modulo-2 adder.

*Example:

g (X)=g"+g" X +g". X? =1+ X + X?

g,(X)=0;"+9,” X +9y". X" =1+ X
The output sequence is found as follows:




ENCODER REPRESENTATION -CONT’'D

In more details:

m(X)g, (X)=(1+X)HA+X +X*)=1+ X + X’ + X*
m(X)g,(X)= 1+ X1+ X2 =1+ X*

m(X)g (X)=1+X +0.X*>+ X*+ X*
m(X)g,(X)=1+0.X +0.X*>+0.X> + X*

UX) = (L) +(1,0)X +(0,0)X > +(1,0)X> + (L, X *
U=11 10 00 10 11




STATE DIAGRAM

A finite-state machine only encounters a finite number of states.

State of a machine: the smallest amount of information that, together with a
current input to the machine, can predict the output of the machine.

In a convolutional encoder, the state is represented by the content of the
memory.

Hence, there are states. (grows exponentially w/ constraint length)




STATE DIAGRAM - CONT'D

0/00 Output
Tnput (Branch word)
ISel N
1/11 . - 00 | 0”1 i
P N U

Current input Next output
state state
0 00
S S
00 < | 1
=2

—_—t O = | D) -




TRELLIS - CONT'D

Trellis diagram is an extension of the state diagram
that shows the passage of time.

= Example of a section of trellis for the rate 2 code




TRELLIS -CONT’D

A trellis diagram for the example code

Input bits — Tayl bits
1 0 1 0 0
Output bits
11 10 00 10 11
. 0/00 0/00 0/00 0/00 0/00
T141 R VAN ] T 141 T141 R VAN




TRELLIS - CONT'D

Input bits _ Tail bits
1 0 1 0 0
Output bits
11 10 00 10 11
0/00 o 0/00 o 0/00 /0 /0]

\i/ll\




OPTIMUM DECODING

If the input sequence messages are equally likely, the
optimum decoder which minimizes the probability of
error is the Maximum likelihood decoder.

ML decoder, selects a codeword among all the
possible codewords which maximizes the likelihobd")

functiof, where is thelf€ceived
sequence and is one of the possible
codewords: L




ML DECODING FOR MEMORY-LESS CHANNELS

Due to the independent channel statistics for memoryless
channels, the likelihood function becomes

PZIU™)=p,, . (Z,2,2;,..|U™) = HP(Z U{™) HH p(z;; [u§”)

i=1 j=1

.........

and equivalently, the log-likelihood function becomes

7y(M)=log p(Z|U™) = Zlog P(Z, 1U™) =3 log p(Z,.IU(”” )

~ =1 j=1 Y

[
The path metric up to time index , is called the partial path metric.




AWGN CHANNELS

For BPSK modulation the transmitted sequence
corresponding to the codevord is denoted by

wheres™ = (5™, s™ . SM™ ) s, "ands",...,s{",....s'")
and Sij = —\/ Ec

The log- Ilkellhood function becomes

(m) __ (m) Inner product or correlation
7/U(m) ZZZ“S <Z S > between Z and S
i=1 j=1

= Maximizing the correlation is equivalent to minimizing the




THE VITERBI ALGORITHM

The Viterbi algorithm performs Maximum likelihood decoding.

It find a path through trellis with the largest metric (maximum
correlation or minimum distance).

= |t processes the demodulator outputs in an iterative
manner.

= At each step in the trellis, it compares the metric of all
paths entering each state, and keeps only the path with
the largest metric, called the survivor, together with its
metric. K-1

= |t proceeds in the trellis by eliminating the least likely

paths.




THE VITERBI ALGORITHM - CONT'D

Viterbi algorithm:

A. Do the following set up:
= For a data block of L bits, form the trellis. The trellis has
L+K-1 sections or levels and starts at tifje  and ends
up attfime
= Label all the branches in the trellis with their
corresponding branch metric.
For each state in the trellis at the timje  which is

S(td)eeaéfbbl by '} , defin_

parameter (path metric)
B. Then, do the following:




THE VITERBI ALGORITHM - CONT'D

Set and

2. Aitirhe=0 computethe partial path metrics for all
the paths entering each state.

3. Set equal to the best partial path metric
Pe@%ermg ach state attime .

Sbtthd Survivor path and delete the dead paths

from the trellis. t

4. If , increase by 1 and return to step 2.

C. Start at state zero at time . Follow the
survi g't{.:ranches I:hackwards through the trellis.
Thbﬁ) us defined is unique and correspond

—

to the ML codewordt,




EXAMPLE OF VITERBI DECODING

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)

o 000 . 0/00 . 0/00 0/00 0/00
T U S
0 11\‘;: 11 o 11 o
“N0/10 O K00
' . V() B ‘1/01 J



VITERBI DECODING-CONT'D

Label al the branches with the branch metric (Hamming distance)

m = (101)
U=(11 10 00 10 11)
Z=(11 10 11 10 01) r(S(t).t)

@ , O . Q » O v QO 1 O
I N | e




VITERBI DECODING-CONT'D

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)

~ I\ ;
~ ~ S
~ ~ N
S S ~
~ ~
~ ~ o
S S ~
o S
~
~
< ~
' A

\ -’
t 2/
s
-

N
7

\
AY
N \
A \
N \ -,
AN
\ ! NP
N <
\\ e N >
AN
N N J
Y
N

¢




VITERBI DECODING-CONT'D

m = (101)
U=(11 10 00 10 11)
Z=(1 10 11 10 01)

) 2 @ 1 . O 1 O 1 O
. T

N
7

~ ~
~ ~
~

~
~
~
~
~
N

~
A N
\ N
N \
N \
\ N -
N
N ! NP
\ _<
\\ e \ e
N
\ ” N J
0 0 \ 0
N

ﬂ\
~
~
~
~
~
2/
74
7




VITERBI DECODING-CONT'D

i=4

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)




VITERBI DECODING-CONT'D

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)

: &) 2y,

~
~
~
~
~
~
~ ~
~
. ~

~
So
) ) a / a
~ ~
~ i ~
SN Y/ ~
N s '
o , )
N\ \ Pid
A N
\ \ -
\ \ ”




VITERBI DECODING-CONT'D

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)

~ ;\ ;\ X
RS RS S
S S ~
0 1 0
~ ~ ~
~ ~
~ = ~ ~
~ ~
RS ’ RS
) )
0 \ \ Y TS o 0
\ \ i
A N
\ \ ”
-




VITERBI DECODING-CONT'D

Trace back and then:

m = (101)
i = (100) Vs U=(11 10 00 10 11)
U=(11 10 11 00 00) Z=(11 10 11 10 01)

RN RS X
~ ~
\\ ~
' 1 0
U \\ \\
\\ ~
) a / a
~
~
u X )
\
N N
A N




SOFT AND HARD DECISIONS

Hard decision:

= [he demogulator makes a firm or hard decision whether on%or ero is
tgcr:]isériglrt]tles and provides no other information reg. how reliable the

m |—Ien e, ﬁs output is only zero or gne (the output is quantized only to two
evel) w |ch_P_Sr|%'erm’d'bT§Q_aeca 2) -DITS™.

Soft decision:

= [he emodwaﬁor é)royi_des the decoder with some side information
together with the decision.

: ;l;)r}e sidg information provides the decoder with a measure of confidence

the decision.
: 'I;\he dem?dul tor outgtits hich are called soft-bits, are quantized to more
than two levels. (eg: 3-leve s;

Decoding based on soft-bits, is called the “soft-decision decoding”.
On AWGN channels, 2 dB and on.fading channels 6 dB gain are
gbtgnedhby usirfg‘§o%-cpecoding é)v%r Hardn-decvgi'ngg! !




PERFORMANCE BOUNDS ...

Basic coding gain (dB) for soft-decision Viterbi decoding

Uncoded Code rate 1/3 - 1/2

E, /N, : :
(dB) P, K 7 8.6 7
6.8 107 42 4435 38

---------------------------------------------------------------------------------------------------------------
........

....................

............................................................................




INTERLEAVING

Convolutional codes are suitable for memoryless
channels with random error events.

Some errors have bursty nature:

= Statistical dependence among successive error events
(time-correlation) due to the channel memory.
=Like errors in multipath fading channels in wireless
communications, errors due to the switching noise, ...




INTERLEAVING ...

= Consider a code with t=1 and 3 coded bits.
= A burst error of length 3 can not be corrected.

A1|A2(A3(B1|B2|B3|CI1|C2|C3

= Let us use a block interleav@r3X3

A1|A2(A3(B1|B2|B3|CI1|C2|C3 A1|BI|C1{A2|B2|C2|A3|B3|C3

| |

Interleaver Deinterleaver




CONCATENATED CODES




CONCATENATED CODES

A concatenated code uses two levels on coding, an inner code
and an outer code (higher rate).

= Popular concatenated codes: Convolutional codes with Viterbi
decoding as the inner code and Reed-Solomon codes as the
outer code

The purpose is to reduce the overall complexity, yet achieving
the required error performance.

Input Outer

—— Interleaver Inner
data encoder encoder Modulate 1




CONCATENATED CODES

¢ ¢ QDT “Source ~|  Entoder Encoder [

Q’ Channel
Encoder-channel-decoder _gp = ou oorer L

SyStem C — Q — D can b B Fig. 4. Concatenated Code Schematic.
viewed as defining a o
super-channel Q’ with a o e e e e e
smaller probability of &k |

error, and with complex H B S 1
correlations among its N )

errors.

Rate
10

10

Concptenated a;

‘ and Convolutidnal

n | S

Fig. 10,  Performance of RS(255,223) and (2,1), K=7 Conuv. Code.

|
!
N\ oo ™~ -
\ | Cc]ﬁ Al ! B
f




PRODUCT/RECTANGULAR CODES:
CONCATENATION + INTERLEAVING

Some concatenated codes make use of the idea of
Interleaving.

Blocks of size larger than the block lengths of the
constituent codes C and C’.

= After encoding the data of one block using code C’,

= ... the bits are reordered within the block in such a way that nearby bits
are separated from each other once the block is fed to the second code

C.

A simple example of an interleaver is a rec ar code




PRODUCT CODE EXAMPLE

—FOOR MO~
== N = R

(a)

(a) A string 1011 encoded using a concatenated code w/ two Hamming codes, H(3,
1) = Repetition code (R3) and H(7,4).

(b) a noise pattern that flips 5 bits.

(c) The received vector.




PRODUCT CODES (CONTD)

[1 11 17-.
0 0} * | * g 0[0 0
11 11 1 111 1
11 * 110 1 111 1 111 1
0 0 * 001 000 000
0 0 * 100 = (000 000
(a) L1 1] (b) (cyll L 1] (L 1 1] (ejll L 1].
(d) After decoding using the horizontal (3, 1) . .
decoder, and 110 1 111 1
(e) after subsequently using the vertical (7; 4 1|10 1]1)1)
decoder. 11 1 1|11
110 1 {1 1
100 000
100 000
111 111




PRACTICAL EXAMPLE: COMPACT DISC

“Without error correcting codes, digital audio
would not be technically feasible.”

Channel in a CD playback system consists of a transmitting
laser, a recorded disc and a photo-detector.

Sources of errors are manufacturing damages, fingerprints or
scratches

Errors have bursty like nature.

Error correction and concealment is done by using a
concatenated error control scheme, called cross-interleaver
Reed-Solomon code (CIRC).

Both the inner and outer codes are shortened RS codes




COMPACT DISC - CIRC ENCODER

CIRC encoder and decoder:

Encoder
/\
~ N
A C D C D
" interleave enczode interleave enclode interleave
’
A C D C D

deinterleave deczode deinterleave declode deinterleave




ADAPTIVE MODULATION AND CODING




ADAPTIVE MODULATION

/ Send 64 QAM Here
ok

2 -

Fading envelope (dB) of user 1
ES
T
L

Send BPSK Here

10 1 ' I
0

I
02 04 08 08 " 1.2 14 18 1.8
Time (secs)




ADAPTIVE MODULATION/CODING: MULTI-USER

Exploit multi-user diversity.
= Users with high SNR: use MQAM (large M) + high code rates
= Users with low SNR: use BPSK + low code rates (i.e. heavy error protection)

In any WIMAX frame, different users (assigned to time-frequency slots within a
frame) would be getting a different rate!

= j.e. be using different code/modulation combos..




BASIS FOR ADAPTIVE

MODULATION/CODING (AMC)

K-user system: the subcarrier
of interest experiences i.i.d.

Rayleigh fading: each
user’s channel gain is
independent of the others,
and is denoted by hk
1.4
1.2-

N

“‘"\\ ~
L

N

u_'l.

o

- %

/. ,,/,/

the maximum of the K" users chamle gains..

Capacity (bits/s/Hz)

QPSK Bit Eror Rate

—
(]

Qo

15

30

SNR (dB)




WIMAX: USES FEEDBACK & BURST PROFILES

Transmitter Receiver
bits bits
in | ECC Symbol | | Power _| Channel Demod el Decod C"l‘i

Encoder Mapper Control SINR =y Smo ecoaer
A
Select Select
Queue T Code TConst_ Py) v
Adaptive Modulation and Coding | _ Channel
Controller - Feedback Channel: Estimation
PER, v

Figure 6.7: Adaptive Modulation and Coding Block Diagram.

Lower data rates are achieved by using a small constellation — such as
QPSK - and low rate error correcting codes such as rate 1/2
convolutional or turbo codes.

The higher data rates are achieved with large constellations — such as




AMC CONSIDERATIONS

BLER and Received SIN ada Enle modulgg%n eory, the
stantane us c ann anne INR, it can
e erm|ne he opt |mum co mod atlon strategy and
ransmit ower

o actice weve R should be carefully monitored
gﬁ! t on w et er lFte data rate should geylncreased ?the
|s ow or decreased to a more robust setting.

Automatic Repeat Request (A RQnaeIIoiNsllr"a ses the
Ia tiﬁg%ﬁ operaiing pg!nt Ey abo ? actor o ?8 It'rom
elay-tolerant ap lications,.jt may be possible to accep,
Eﬂf é/roac In A%{CS }8‘9 é?\ C %lnlngﬂﬁ use

conjuncili n wit to make use o unsucces packets

Power control vs. Waterfilling: |n theaqry the best ower control
omtl the so-calI
ate illi str ex r|1w ic more gower IS a ﬂted to
ronr?f nnels e]ss ower all catgd Eo wea
annels

n ractlce t osite ma rue in some
cases P pp y




AMC VS SHANNON LIMIT

5 | | | | | |
45F
G40AM
4r R34 -
35 -
Shannon Limit

[#8]
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160AM -
R34

Throughput (bps/Hz)
]
(] in
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T
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MAIN POINTS

Adaptive MQAM uses capacity-achieving power and rate
adaptation, with power penalty K.

Adaptive MQAM comes within 5-6 dB of capacity

Discretizing the constellation size results in negligible
performance loss.

Constellations cannot be updated faster than 10s to 100s
of symbol times: OK for most dopplers.




TOWARDS THE SHANNON LIMIT!
LDPC, TURBO CODES, DIGITAL FOUNTAINS




RECALL: CODING GAIN POTENTIAL

0 Symbol error perfromance of M-ary PAM _;" ' EbNe eB)
10 - Lo 20 30 &0 5.0 6.0 7.0 8.0

Binary-PAM |’

. 10

pa— !

10

e

102!
E 10

|

| |

ENEREN
N 1 -
1 |

| |

|

Symbol error probability: P_(M)
)

- | — 10
10°. AT \}\_
10°; S R N 10
Cozc%tanaleld . .i"‘
a g 1
10 E n an\o st ima
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Fig. 10. Performance of RS(255,223) and (2,1}, K=7 Conuv. Code.
Eb/N0 [dB]

VVITn convolutional code aione, (@BEK oT 1u°, we require Eb/No of 4.5dB or




LOW-DENSITY PARITY CHECK (LDPC) CODES




LDPC

s Low-Density Parity-Check (LDPC) codes are a class of linear block
codes characterized by sparse parity check matrices H

— H has a low-density of 1's

m LDPC codes were originally invented by Robert Gallager in the early
1960’s but were largely ignored until they were “rediscovered” in the
mid-1990’s by MacKay

m Sparseness of H can yield large minimum distance d,,, and reduces
decoding complexity

m Can perform within 0.0045 dB of Shannon limit

m These code are making their way into standards
— Binary turbo: UMTS, cdma2000

— Duobinary turbo: DVB-RCS, 802.16

- LDPC: DVB-S2 standard.




EXAMPLE LDPC CODE

A low-density parit%/-check matrix and the corresponding (bipartite)
graph of a rate-1/4 low-density parity-check code with
locklength N =16, and M =12 constraints.

Each white circle represents a transmitted bit.

Each bit participates in j = 3 constraints, represented by S[gj1ares.
Each constraint forces the sum of the k = 4 bits to which it is




TANNER GRAPH

m A Tanner graph is a bipartite graph that describes the parity check
matrix H

m There are two classes of nodes:
— Variable-nodes: Correspond to bits of the codeword or equivalently, to
columns of the parity check matrix
« There are n v-nodes

— Check-nodes: Correspond to parity check equations or equivalently, to
rows of the parity check matrix

» There are m=n-k c-nodes
— Bipartite means that nodes of the same type cannot be connected (e.g. a
c-node cannot be connected to another c-node)
m The i"check node is connected to the j* variable node iff the (i,j)"
element of the parity check matrix is one, i.e. if h; =1

— All of the v-nodes connected to a particular ¢c-node must sum (modulo-2)
to zero




A.K.A FACTOR GRAPH NOTATION

r 1 1 T T

= - o




FACTOR GRAPHS

A factor graph shows how a function of several variables can be factored
into a product of "smaller” functions.

For example, the function g defined by g(x,y)=xy+x can be factored into
a(x.y)=h,()F(y) where f,{x)=x and H(y)=y*1.

The factor graph depicting this factorization: = f1 fa ¥
(O —

Graph for function g(x,y,z) = f,(x,y) f,(y,2) f5(x,2). * 2

Why Factor graphs?
1. Very general: variables and functions are arbitrary
2. Factorization => Sum-Product Algorithm can be applied




LDPC CODING CONSTRUCTIONS

ﬂ Around 1996, Mackay and Neal described methods for constructing sparse m
matrices

= The idea is to randomly generate a M x N matrix H with weight d, columns
and weight d. rows, subject to some constraints

— h.ﬂ.“ﬂ‘— ﬂ‘;n“ '1 h - .H.I'IH“. l‘.’-h-ln.ﬂ-“ e h T o AHII I P e .HI"HA‘AI- *l‘ﬂ“ '1
B LOnNsuucuon 1A UVerap pDetween any two CoIuimns is No greaier nan 1
— This avoids length 4 cycles

= Construction 2A: M/2 columns have d, =2, with no overlap between any pair

of columns. Remaining columns have d, =3. As with 1A, the overlap between
any two columns is no greater than 1

m Construction 1B and 2B: Obtained by deleting select columns from 1A and 2ZA

\ — Can result in a higher rate code /




LDPC DECODING: ITERATIVE

ﬁ Like Turbo codes, LDPC can be decoded Iteratively \
— Instead of a trellis, the decoding takes place on a Tanner graph

— Messages are exchanged between the v-nodes and c-nodes
— Edges of the graph act as information pathways

= Hard decision decoding
— Bit-flipping algorithm
m Soft decision decoding
— Sum-product algorithm
+ Also known as message passing/ belief propagation algorithm
— Min-sum algorithm
+ Reduced complexity approximation to the sum-product algorithm
= [n general, the per-iteration complexity of LDPC codes is less than it is
for turbo codes

— However, many more iterations may be required (max=100;avg=30)
\ — Thus, overall complexity can be higher than turbo /




REGULAR VS IRREGULAR LDPC CODES

ﬂ An LDPC code is regular if the rows and columns of H have uniform \
weight, i.e. all rows have the same number of ones (d,) and all columns
have the same number of ones (d.)
— The codes of Gallager and Mac<ay were regular (or as close as possible)
— Although regular codes had impressive performance, they are still about 1 dB

e e |

from capacity and generally periorm worse than turbo codes
= An LDPC code is irregular if the rows and columns have non-uniform
weight

— lrregular LDPC codes tend to outperform turbo codes for block lengths of
about n>103

m The degree distribution pair (A, p) for a LDPC code is defined as
A(x) = Z‘ﬂ }fo':_]

d, -
elx)y=73 p;x'7
Tl

= A, p, represent the fraction of edges emanating from variable (check)
\\ nodes of degree J




IRREGULAR LDPC CODES

/- Luby et. al. (1998) developed LDPC codes based on irregular LDPC\
Tanner graphs

m Message and check nodes have conflicting requirements
— Message nodes benefit from having a large degree
— LDPC codes perform better with check nodes having low degrees

m |rregular LDPC codes help balance these competing requirements
— High degree message nodes converge to the correct value quickly

— This increases the quality of information passed to the check nodes,
which in turn helps the lower degree message nodes to converge

m Check node degree kept as uniform as possible and variable node
degree is non-uniform

- . Check node degree =14, VVariable node degree =5, 6, 21,23
= No attempt made to optimize the degree distribution for a given code

\ rate




TURBO CODES




TURBO CODES

'm Turbo codes get their name because the decoder uses
feedback, like a turbo engine.
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TURBO ENCODER

{oHe}
The encoder of a turbo code.

Each box C1, C2, contains a convolutional code.

The source bits are reordered using a permutation 1 before they
are fed to C2.

The transmitted codeword is obtained by concatenating or




TURBO: MAP DECODING

'm The goal of the maximum a posteriori (MAP) decoder is to determine
P(u(t)=1|y )and P(u(t)=0 |y ) for each .
— The probability of each message bit, given the entire received codeword.

m These two probabilities are conveniently expressed as a log-likelihood
ratio:

ﬂu(l‘) _ lﬂg P[”(I:' =1 | }7]

Plu(t)=0]y]




Performance as a Function of

Number of Iterations
i . . m K=5

— constraint length
mr=172

— code rate

ol ol el ¥, ]

m L=65536
— interleaver size
— number data hits

= Log-MAP algorithm

BER

| 10 iterations

El: ' =
°L  18iterations T
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TURBO CODES: PERFORMANCE...

Turbo codes have extraordinary performance at low SNR. *
— Very close to the Shannon limit.

— Due to a low multiplicity of low weight code words.

However, turbo codes have a BER “floor”.

— This is due to their low minimum distance.

Performance improves for larger block sizes.

- Larger block sizes mean more latency (delay).
— However, larger block sizes are not more complex to decode.
— The BER floor is lower for larger frame/interleaver sizes

The complexity of a constraint length K, turbo code is the
same as a K = K. convolutional code, where:

- Kee = 2+K o+ log,(number decoder iterations)




UMTS TURBO ENCODER

Systematic ™
Input ~ Output
X, - X,

Uninterleaved
* Parity > Cutput
Z,

Interleaved
Parity
VAN

B
-

Interleaved
Input

2 J

m From 3GPP TS 25 212 v6.6.0, Release 6 (2005-09)
— UMTS Multiplexing and channel coding

m Data is segmented into blocks of L bits.
— where40 <L <5114




WIMAX: CONVOLUTIONAL TURBO CODES (CTC)

The standard specifies an optional convolutional turbo code (CTC) for
operation in the 2-11 GHz range.

Uses same duobinary CRSC encoder as DVB-RCS, though without

output W.
" it B —
B { I
.{:}.

Modulation: BPSK, QPSK, 16-QAM, 64-QANM, 256-QAM.
Key parameters:

- Input message size 8 to 256 bytes long.
- r={1/2, 213, 3/4, 5/6, 7/8}

4
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DIGITAL FOUNTAIN ERASURE CODES




WHAT IS A DIGITAL FOUNTAIN?

A digital fountain is an ideal/paradigm for data transmission.
= Vs. the standard (TCP) paradigm: data is an ordered finite sequence of bytes.

Instead, with a digital fountain, a k symbol file yields an infinite data stream
(“fountain”); once you have received any k symbols from this stream,
you can quickly reconstruct the original file.




HOW DO WE BUILD A DIGITAL FOUNTAIN?

We can construct (approximate) digital fountains using
erasure codes.

* Including Reed-Solomon, Tornado, LT, fountain codes.

Generally, we only come close to the ideal of the
paradigm.

= Streams not truly infinite; encoding or decoding times;
coding overhead.




FORWARD ERROR CORRECTION (FEC):
EG: REED-SOLOMON RS(N,K)

RS(N,K) >=K of N Recover K

data packets!

—
FEC (N-K) . |

received
y'y

—>

Lossy Network

High Encode/Decode times: O {K(N-K) log, N}.
Hard to do @ very fast line rates (eg: 1Gbps+).

Block
Size

N)




DIGITAL FOUNTAIN CODES (EG: RAPTOR
CODES)

>= K4¢ Recover K

received data packets!

Rateless: No Block Size !

“Fountain of encoded pkts” -
Compute on demand!

=y

= wm—\
Low Encode/Decode times: O {K In(K/d)}

w/ probability 1- d. Overhead € ~ 5%.
Can be done by software & @ very fast (eg: 1Gbps+).

Data=K




RAPTOR/RATELESS CODES

Properties: Approximately MDS

=“Infinite” supply of packets possible.

*Need k(1+¢) symbols to decode, for some ¢ > 0.
= Decoding time proportional to k In (1/¢).

=On average, In (1/¢) (constant) time to produce an
encoding symbol.

Key: Very fast encode/decode time compared to RS
codes




DIGITAL FOUNTAIN ENCODER/DECODER

Each encoded packet f,, is produced from the source file sys083... 55 as

EnCOder: follows:

.....

......
----------------------------------

size K, as we'll discuss later.

2. Choose, uniformly at random, d,, distinct input packets, and set ¢,
equal to the bitwise sum, modulo 2 of those d,, packets. This sum
can be done by successively exclusive-or-ing the packets together.

l. Find a check node t,, that is connected to oniy one source packet

sp. (If there is no such check node, this decoding algorithm halts at
this point, and fails to recover all the source packets.)

(a) Set sp =1,.

(b} Add sp to all checks ?,,; that are connected to sp:

tn 1= tnr + 8, forall n’ such that G, = 1. (50.1)

(¢) Remove all the edges connected to the source packet s.

2. Repezt (1) until all {s;} are determined.




DIGITAL FOUNTAIN DECODING (EXAMPLE)

Received bits: 1011

O tyisofdegree 1,8, =1, =1

O t, &t; XOR’ed w/ s, = 1.
Remove S;’s edges

O s,setto t,=0 {degree =1} ‘”979




ESOTERICS: ROBUST SOLITON DEGREE
DISTRIBUTION

tau
0.4 4 Figure 50.2. The distributions p(l) = 1/K
pld) and 7(d) for the case d 1 for d — 2.3 K
03 - K = 10000, ¢ =02, 6 = 005, @ a(d-1) 1
which gives § = 244, K/5 = 41,
0.2 4 amd Z = 1.3, The distribution v is S = Cll‘l{K"ﬁ) V/E
l largest at d =1 and d = K/S. !
0.1 +
51 _ _
o h““r“--- | | | | - [ Kd ford =1,2,... (K/5)-1
D 10 20 30 40 50 T{d) = #In(S/8) ford=K/S
I 0 for d > K/S
140
delta=0.01 — (d] +7(d)
120 - delta=0.1 : -2
100 | dolta09 - p(d) = ;
80 & Figurs 50.3. The number of
60 degree-one checks 5 (upper figure)
40 - and the quantity K’ (lower figure)
20 P as a function of the two
0 =il B— parameters - and ¢, for

0.0t o K = 10000. Luby’s main theorem

delta=0.01 —— proves that there exists a value of
defta=0.1 e such that, given K’ received
s packets. the decoding algorithm
will recover the K source packets

with probakility 1 — &,

11000




APPLICATIONS: RELIABLE MULTICAST

Many potential problems when multicasting to large
audience.

= Feedback explosion of lost packets.
= Start time heterogeneity.
= Loss/bandwidth heterogeneity.

A digital fountain solves these problems.

= Each user gets what they can, and stops when they have
enough: doesn’t matter which packets they’'ve lost

= Different paths could have diff. loss rates




APPLICATIONS: DOWNLOADING IN PARALLEL

Can collect data from multiple digital fountains for
the same source seamlessly.

= Since each fountain has an “infinite” collection of packets, no
duplicates.

= Relative fountain speeds unimportant; just need to get enough.
= Combined multicast/multi-gather possible.

Can be used for BitTorrent-like applications.

J (13

= Microsoft's “Avalanche” product uses randomized linear codes to
do “network coding”




Single path: limited capacity, delay, loss...




IDEA: AGGREGATE CAPACITY, USE ROUTE
DIVERSITY!

 Perceived
Loss

High Perceived




MULTI-PATH LT-TCP (ML-TCP): STRUCTURE

Socket Map pkts—paths intelligently
Buffer based upon Rank(p;, RTT;, w;)

Note: these ideas can be applied to other link-level multi-homing,
Network-level virtual paths, non-TCP transport protocols (including video-streaming)




SUMMARY

Coding: allows better use of degrees of freedom

= Greater reliability (BER) for a given Eb/No, or

= Coding gain (power gain) for a given BER.

= Eg: @ BER = 10°:
= 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional)
= Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes)

= Magic achieved through iterative decoding (belief propagation) in both
LDPC/Turbo codes

= Concatenation, interleaving used in turbo codes
= Digital fountain erasure codes use randomized LDPC constructions as
well.

Coding can be combined with modulation adaptively in response
to SNR feedback

Coding can also be combined with ARQ to form Hybrid ARQ/FEC




