PERFORMANCE OF CODES

CONTEXT: TIME DIVERSITY

Time diversity can be obtained by interleaving and coding over symbols across different coherent time

Interleaving

Interleaving: of sufficient depth:
(> coherence time)
\Rightarrow At most 1 symbol of codeword lost
Coding alone is not sufficient!

WHAT IS CHANNEL CODING?

Transforming signals to improve communications performance by increasing the robustness against channel impairments (noise, interference, fading, ..)

- It is a time-diversity technique, but can be broadly thought of as techniques to make better use of the degrees-of-freedom in channels (eg: space-time codes)

Waveform coding: Transforming waveforms to better waveforms
Structured sequences: Transforming data sequences into better sequences, having structured redundancy.

- "Better" in the sense of making the decision process less subject to errors.
- Introduce constraints on transmitted codewords to have greater "distance" between them

Note: Channel coding was developed in the context of AWGN channels \& we shall study them in the same context

(MODIFIED) BLOCK DIAGRAM

CHANNEL CODING SCHEMES: BLOCK, CONVOLUTIONAL, TURBO

CODING GAIN: THE VALUE OF CODING...

- Error performance vs. bandwidth
- Power vs. bandwidth
- Data rate vs. bandwidth
- Capacity vs. bandwidth

Coding gain:

For a given bit-error probability, the reduction in the $\mathrm{Eb} / \mathrm{N} 0$ that can be realized through the use of code:
$G[\mathrm{~dB}]=\left(\frac{E_{b}}{N_{0}}\right)_{u}[\mathrm{~dB}]-\left(\frac{E_{b}}{N_{0}}\right)_{c}[\mathrm{~dB}]$

CODING GAIN POTENTIAL

THE ULTIMATE SHANNON LIMIT

Goal: what is min Eb/No for any spectral efficiency $(\rho \rightarrow 0) ?$
Spectral efficiency $\rho=B / W=\log _{2}$ (1 + SNR)

- where SNR $=E_{s} / N_{o}$ where $E_{s}=$ energy per symbol
- Or SNR = (2 ${ }^{\rho}-1$)
$\square \mathrm{Eb} / \mathrm{No}=\mathrm{Es} / \mathrm{No}$ * (W/B)

$$
=\mathbf{S N P} / \mathbf{n}
$$

Eb/l Lets try to appreciate what Shannon's bound means by designing some simple codes and comparing it to the Shannon bound
Fix the Shannon bound
Gap-to-capacity @ BER=10-5:
$9.6 \mathrm{~dB}+1.59=\underline{\mathbf{1 1 . 2} \mathbf{~ d B}}$ (without regard for spectral eff.)
or $9.6-1.76=\underline{\mathbf{7 . 8 4} \mathbf{~ d B}}$ (keeping spectral eff. constant)

BINARY SYMMETRIC CHANNEL (BSC)

Given a BER (f), we can construct a BSC with this BER...

RELIABLE DISK DRIVE APPLICATION

We want to build a disk drive and write a GB/day for 10 years.
" => desired BER: 10^{-15}
Physical solution: use more reliable components, reduce noise
System solut errors (eng

REPETITION CODE (R3) \& MAJORITY VOTE DECODING

Source sequence	Transmitted sequence s
0	000
1	111

$$
\text { source message } \mathrm{s}=000100110
$$

AWGN:

\mathbf{t}							
\mathbf{n}							
\mathbf{n}	$\overbrace{000}^{0}$	$\overbrace{000}^{0}$	$\overbrace{111}^{1}$	$\overbrace{000}^{0}$	$\overbrace{111}^{1}$	$\overbrace{111}^{1}$	$\overbrace{000}^{0}$
	000	001	000	000	101	000	000
0	001	111	000	010	111	000	

Received sequence \mathbf{r}	Likelihood ratio $\frac{P(\mathbf{r} \mid s=1)}{P(\mathbf{r} \mid s=0)}$	Decoded sequence $\hat{\mathbf{s}}$
000	γ^{-3}	0
001	γ^{-1}	0
010	γ^{-1}	0
100	γ^{-1}	0
101	γ^{1}	1
110	γ^{1}	1
011	γ^{1}	1
111	γ^{3}	1

Algorithm 1.9. Majority-vote decoding algorithm for R_{3}. Also shown are the likelihood ratios (1.23), assuming the channel is a binary symmetric channel;

$$
\gamma \equiv(1-f) / f
$$

$\gamma \equiv \frac{(1-f)}{f}$ is greater than 1 , since $f<0.5$, so the winning hypothesis is the one with the most 'votes', each vote counting for a factor of γ in the likelihood ratio.

PERFORMANCE OF R3

CODING: RATE-BER TRADEOFF?

Repetition code R3:

s	0	0	1	0	1	1	0
t	$\overbrace{000}^{0}$	$\overbrace{000}^{0}$	$\overbrace{111}^{1}$	$\overbrace{000}^{0}$	$\overbrace{111}^{1}$	$\overbrace{111}^{1}$	$\overbrace{000}^{0}$
n	000	001	000	000	101	000	000
r	$\underbrace{000}$	$\underbrace{001}$	$\underbrace{111}$	$\underbrace{000}$	$\underbrace{010}$	$\underbrace{111}$	$\underbrace{000}$
¢	0	0	1	0	0	1	0

corrected errors undetected errors

Lets try to design a "better" code: Hamming Code

Shannon: The perception that there is a necessary tradeoff between Rate and BER is illusory! It is not true upto a critical rate, the channel capacity!

HAMMING CODE: LINEAR BLOCK CODE

A block code is a rule for converting a sequence of source bits s, of length K, say, into a transmitted sequence t of length N bits.
In a linear block code, the extra N-K bits are linear functions of the original K bits; these extra bits are called paritycheck bits.
(7, 4) Hamming code: transmits $N=7$ bits for every $K=4$ source bits.

- The first four transmitted bits, $t_{1} t_{2} t_{3} t_{4}$, are set equal to the four source bits, $\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \mathrm{~s}_{4}$.
- The parit. circle (se

jarity within each

HAMMING CODE: (CONTD)

s	t
0000	0000000
0001	0001011
0010	0010111
0011	0011100

	s	t		s
		t		
0100	0100110		1000	1000101
0101	0101101		1001	1001110
0110	0110001		1010	1010010
0111	0111010		1011	1011001

s	t
1100	1100011
1101	1101000
1110	1110100
1111	1111111

Table 1.14. The sixteen codewords $\{\mathrm{t}\}$ of the $(7,4)$ Hamming code. Any pair of codewords differ from each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in terms of matrices as follows. The transmitted codeword t is obtained from the source sequence s by a linear operation,

$$
\begin{equation*}
\mathrm{t}=\mathrm{G}^{\mathrm{T}} \mathrm{~s} \tag{1.25}
\end{equation*}
$$

where G is the generator matrix of the code,

$$
G^{\top}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1.26}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

HAMMING CODE: SYNDROME DECODING

If channel is BSC and all source vectors are equiprobable, then...

- ... the optimal decoder identifies the source vector s whose encoding $\mathbf{t}(\mathbf{s})$ differs from the received vector \mathbf{r} in the fewest bits.
- Similar to "closest-distance" decision rule seen in demodulation!

Can we do it more efficiently? Yes: Syndrome decoding

The decoding task is to find the smallest set of flipped bits that can account for these violations of the parity rules.
[The pattern of violations of the parity checks is called the syndrome: the syndrome above is $\mathbf{z}=(\mathbf{1}, \mathbf{1}, \mathbf{0})$, because the first two circles are 'unhappy' (parity 1) and the third circle is 'happy' (parity 0).]

SYNDROME DECODING (CONTD)

Can we find a unique bit that lies inside all the `unhappy' circles and outside all the 'happy' circles?

- If so, the flipping of that bit would account for the observed syndrome.

(c)

Syndrome z	000	001	010	011	100	101	110	111
Unflip this bit	none	r_{7}	r_{6}	r_{4}	r_{5}	r_{1}	r_{2}	r_{3}

HAMMING CODE: PERFORMANCE

A decoding error will occur whenever the noise has flipped more than one bit in a block of seven.

The probability scales as $\mathbf{O}\left(\boldsymbol{f}^{2}\right)$, as did the probability of error for the repetition code R3; but Hamming code has a greater rate, R $=4 / 7$.

Dilbert Test: About 7\% of the decoded bits are in error. The residual errors are correlated: often two or three successive decoded

SHANNON'S LEGACY: RATE-RELIABILITY OF CODES

Noisy-channel coding theorem: defines achievable rate/reliability regions

Note: you can get BER as low as desired by designing an appropriate conde within
The equation defining the
Shannon limit (the solid curve) is
$R=C /\left(1-H_{2}\left(p_{\mathrm{b}}\right)\right)$, where C and H_{2} are defined in equation (1.35).

SHANNON LEGACY (CONTD)

The equation defining the Shannon limit (the solid curve) is $R=C /\left(1-H_{2}\left(p_{\mathrm{b}}\right)\right)$, where C and H_{2} are defined in equation (1.35).

The maximum rate at which communication is possible with arbitrarily small p_{h} is called the capacity of the channel.

$$
C(f)=1-H_{2}(f)=1-\left[f \log _{2} \frac{1}{f}+(1-f) \log _{2} \frac{1}{1-f}\right] ;
$$

BSC(f) capacity:
$\mathbf{f}=\mathbf{0 . 1}$ 'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives - you can get that performance with just two disk drives (since $1 / 2$ is less than 0.53). And if you want $p_{\mathrm{b}}=10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too!'

CAVEATS \& REMARKS

Strictly, the above statements might not be quite right: Shannon proved his noisy-channel coding theorem by studying sequences of block codes with everincreasing block lengths, and the required block length might be bigger than a gigabyte (the size of our disk drive),
... in which case, Shannon might say well, you can't do it with those tiny disk drives, but if you had two noisy terabyte drives, you could, make a single highquallty terabyte drive from them'.

Information theory addresses both the limitations and the possibilities of communication.

- Reliable communjcation at any rate beyond the capacity is impossible, and that reliable communication at all rates up to capacity is possible.

GENERALIZE: LINEAR CODING/SYNDROME DECODING

The first four received bits, $r_{1} r_{2} r_{3} r_{4}$, purport to be the four source bits; and the received bits $r_{5} r_{6} r_{7}$ purport to be the parities of the source bits, as defined by the generator matrix \mathbf{G}.

- Evaluate the three parity-check bits for the received bits, $r_{1} r_{2} r_{3} r_{4}$, and see whether they match the three received bits, $r_{5} r_{6} r_{7}$.

The differences (modulo 2) between these two triplets are called the syndrome of the received vector.

- If the syndrome is zero then the received vector is a codeword, and the most probable decoding is given by reading out its first four bits.
- If the syndrome is non-zero, then the noise sequence for this block was non-zero, and the syndrome is our pointer to the most probable error pattern.

LINEAR CODING/SYNDROME DECODING (CONTD)

Coding:
$\mathbf{t}=\mathbf{G}^{\top} \mathbf{S}$,
matrix of the code $\mathbf{G}^{\top}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right]$

$$
\mathbf{G}^{\top}=\left[\begin{array}{l}
\mathbf{I}_{4} \\
\mathbf{P}
\end{array}\right]
$$

$\square \underline{\text { Received vector \& Syndome: } \mathrm{r}=\mathrm{G}^{\top} \mathrm{s}+\mathrm{n}, ~(1)}$
${ }^{\text {th }}$ Lets now build linear codes from ground up (first principles) ${ }^{\text {tisfy }}$ The syndrome-decoding problem is to find the most probable noise vector \mathbf{n} satisfying the equation

$$
\mathrm{Hn}=\mathrm{z}
$$

$\mathrm{Ht}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Parity Check Matrix H:

the parity-check matrix H is given by $\mathbf{H}=\left[\begin{array}{ll}-\mathbf{P} & \mathbf{I}_{3}\end{array}\right]$
in modulo 2 arithmetic, $-1 \equiv 1$, so

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{P} & \mathbf{I}_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

SOME DEFINITIONS

Binary field :

- The set $\{0,1\}$, under modulo 2 binary addition and multiplication forms a field.
- Binary field is Adsditioned Galois fiemd, udtiplje cation

$$
\begin{array}{rlrl}
0 \oplus 0 & =0 & 0 \cdot 0 & =0 \\
0 \oplus 1 & =1 & 0 \cdot 1 & =0 \\
1 \oplus 0 & =1 & 1 \cdot 0 & =0 \\
1 \oplus 1 & =0 & 1 \cdot 1 & =1
\end{array}
$$

DEFINITIONS: FIELDS

Fields:

Let F be a set of objects on which two operations ' + ' and '.' are defined.

- F is said to be a field if and only if

1. F forms a commutative group under + operation. The additive identity element is labeled " 0 ".

$$
\forall a, b \in F \Rightarrow a+b=b+a \in F
$$

2. $\mathrm{F}-\{0\}$ forms a commutative group under. operation. The multiplicative identity element is

The operations " " $\stackrel{\text { " }}{ }$ " and "." distribute:

DEFINITIONS: VECTOR SPACE OVER FIELDS

Vector space: (note: it mixes vectors and scalars)

- Let V be a set of vectors and F a fields of elements called scalars. V forms a vector space over F if:

1. Commutative:
2. Closure:
3. Distributive:

$$
\forall \mathbf{u}, \mathbf{v} \in V \Rightarrow \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \in F
$$

4. Associative:

$$
\forall a \in F, \forall \mathbf{v} \in \mathbf{V} \Rightarrow a \cdot \mathbf{v}=\mathbf{u} \in \mathbf{V}
$$

5. Identity Element:

$$
\begin{gathered}
(a+b) \cdot \mathbf{v}=a \cdot \mathbf{v}+b \cdot \mathbf{v} \text { and } a \cdot(\mathbf{u}+\mathbf{v})=a \cdot \mathbf{u}+a \cdot \mathbf{v} \\
\forall a, b \in F, \forall \mathbf{v} \in V \Rightarrow(a \cdot b) \cdot \mathbf{v}=a \cdot(b \cdot \mathbf{v}) \\
\forall \mathbf{v} \in \mathbf{V}, 1 \cdot \mathbf{v}=\mathbf{v}
\end{gathered}
$$

VECTOR SPACES, SUBSPACES

Examples of vector space $\$_{n}$

- The set of binary n-tuples, denoted by

$$
\begin{aligned}
V_{4}=\{ & (0000),(0001),(0010),(0011),(0100),(0101),(0111), \\
& (1000),(1001),(1010),(1011),(1100),(1101),(1111)\}
\end{aligned}
$$

Vector subspace:

- A subset S of the vector space V_{n} is called a subspace if:
- Zero: The all-zero vector is in S.

Closure: The sum of any two vectors in S is also in S.
Example

```
(0000),(0101),(1010),(1111)} is a subspace of V
```


SPAN, BASES...

Spanning set:

- A collection of vectors $\quad G=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ the linear combinations of which include all vectors in a vector space V , is said to be a spanning set for V or to span V.
"Example:

$$
\{(1000),(0110),(1100),(0011),(1001)\} \text { spans } V_{4} \text {. }
$$

Bases:

- A spanning set for V that has minimal cardinality is called a basis for V.

Cardinality of a set is the number of objects in the set. Example:
$\{(1000),(0100),(0010),(0001)\}$ is a basis for V_{4}.

LINEAR BLOCK CODES ARE JUST SUBSPACES!

Linear block code (\mathbf{n}, k)

- A set with cardinality is called a linear block code if, and only if, it is a subspace of thevecto $V_{n}^{\text {space }} .2^{k}$
V_{n}
Members of C are called codewords.
The all-zero codeword is agodeword: $\subset V$
Any linear combination of codde-words is a cbdeword.

LINEAR BLOCK CODES - CONT’D

LINEAR BLOCK CODES - CONT’D

The information bit stream is chopped into blocks of k bits.
Each block is encoded to a larger block of \mathbf{n} bits.
The coded bits are modulated and sent over channel.
The reverse procedure is done at the receiver.

$$
\begin{aligned}
& n-k \quad \text { Redundant bits } \\
& R_{c}=\frac{k}{n} \text { Code rate }
\end{aligned}
$$

RECALL: REED-SOLOMON RS(N,K): LINEAR ALGEBRA IN ACTION...

LINEAR BLOCK CODES - CONT’D

The Hamming weight (w) of vector U, denoted by $w(U)$, is the number of non-zero elements in U.
The Hamming distance (d) between two vectors U and V, is the number of elements in which they differ.

The minimum distance of a block code is

$$
d(\mathbf{U}, \mathbf{V})=w(\mathbf{U} \oplus \mathbf{V})
$$

$$
d_{\min }=\min _{i \neq j} d\left(\mathbf{U}_{i}, \mathbf{U}_{j}\right)=\min _{i} w\left(\mathbf{U}_{i}\right)
$$

LINEAR BLOCK CODES - CONT'D

Error detection capability is given by

$$
e=d_{\min }-1
$$

Error correcting capability t of a code, which is defined as the maximum number of guaranteed correctable errors per codeword, is
$t=\left[\frac{\min }{2}\right]$

LINEAR BLOCK CODES -CONT’D

LINEAR BLOCK CODES - CONT’D

Encoding in (n,k) block code

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right)=m_{1} \cdot \mathbf{V}_{1}+m_{2} \cdot \mathbf{V}_{2}+\ldots+m_{2} \cdot \mathbf{V}_{k}
$$

LINEAR BLOCK CODES - CONT’D

Example: Block code (6,3)

$$
\mathbf{G}=\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\mathbf{V}_{3}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0
\end{array} 0 \begin{array}{c}
\text { Message vector } \\
0
\end{array} 1 \begin{array}{llll}
\text { Codeword } \\
0 & 1 & 0 & 1
\end{array} 0\right.
$$

SYSTEMATIC BLOCK CODES

Systematic block code (\mathbf{n}, k)

- For a systematic code, the first (or last) k elements in the codeword are information bits.

$$
\begin{aligned}
& \mathbf{G}=\left[\mathbf{P}: \mathbf{I}_{k}\right] \\
& \mathbf{I}_{k}=k \times k \text { identity matrix } \\
& \mathbf{P}_{k}=k \times(n-k) \text { matrix }
\end{aligned}
$$

$$
\mathbf{U}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)=(\underbrace{}_{1}, p_{2}, \ldots, p_{n-k}, m_{1}, m_{2}, \ldots, m_{k})
$$

LINEAR BLOCK CODES - CONT'D

For any linear code we can find an matilix which its rows are orthogogal to rows of

$$
\mathbf{G H}^{T}=\mathbf{0}
$$

Why? H checks the parity of the received word (i.e. maps the N -bit word to a M-bit syndrome).

- Codewords (=mG) should have parity of 0 (i.e. nullspace).
H is called the parity check matrix and its rows are linearly independent.
For systematic linearbloqk codes?]

LINEAR BLOCK CODES - CONT’D

Syndrome testing:

$-\mathbf{S}$ is syndrome of \mathbf{r}, corresponding to the error pattern \mathbf{e}.

LINEAR BLOCK CODES - CONT’D

$\frac{\text { Error pattern Syndrome }}{000000 \quad 000}$
000001101
$000010 \quad 011$
$000100 \quad 110$
$001000 \quad 001$
010000010
$100000 \quad 100$
010001111
$\mathbf{U}=(101110)$ transmitted.
$\mathbf{r}=(001110) \quad$ is received.
\Rightarrow The syndrome of \mathbf{r} is computed:
$\mathbf{S}=\mathbf{r H}^{T}=(001110) \mathbf{H}^{T}=(100)$
\Rightarrow Error pattern corresponding to this syndrome is
$\hat{\mathbf{e}}=(100000)$
The corrected vector is estimated

$$
\hat{\mathbf{U}}=\mathbf{r}+\hat{\mathbf{e}}=(001110)+(100000)=(101110)
$$

There is a unique mapping from Syndrome \leftrightarrow Error Pattern

STANDARD ARRAY: ERROR PATTERNS

Example: Standard array for the $(6,3)$ code

codewords							
000000	110100	011010	101110	101001	011101	110011	000111
000001	110101	011011	101111	101000	011100	110010	000110
000010	110110	011000	101100	101011	011111	110001	000101
000100	110000	011110	101010	101101	011010	110111	000110
001000	111100	\vdots			\vdots		$\underbrace{\text { Coset: }}$
010000	100100						Error pattern +
100000	010100						
010001	100101		\ldots				
codeword							

LINEAR BLOCK CODES - CONT’D

Standard array

1. For row For row
minimum ${ }^{i}$ wetght whtrich is not already listed in the array.
2. Call this error pattern and form the row as the corresponding cose $\mathbf{e}_{i} \quad i$:th

LINEAR BLOCK CODES - CONT’D

Standard array and syndrome table decoding

1. Calculate syndrom $\mathbf{S}=\mathbf{r H}^{T}$
2. Find the coset leade $\hat{\mathbf{e}}=\mathbf{e}_{i}$, corresponding to
3. Calculate $\hat{\mathbf{U}}=\mathbf{r}+\hat{\mathbf{e}}$ and corresponding

- Note that

$$
\hat{\mathbf{e}}=\mathbf{e}
$$

HAMMING CODES

Hamming codes

- Hamming codes are a subclass of linear block codes and belong to the category of perfect codes.
- Hamming codes are expressed as a function of a single integer $\quad m \geq 2^{\text {i.e. } n} n$ and k are derived from m :

$$
\begin{array}{ll}
\text { Code length : } & n=2^{m}-1 \\
\text { Number of information bits : } & k=2^{m}-m-1 \\
\text { Number of parity bits : } & n-k=m \\
\text { Error correction capability : } & t=1
\end{array}
$$

The curummo ur the parmy-uricun matin, n, consist of all non-zero binary m-tuples.

HAMMING CODES

Example: Systematic Hamming code $\mathbf{(7 , 4)}$
$\left.\begin{array}{l}\mathbf{H}=\left[\begin{array}{lll:llll}1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}\right] \\ \hdashline \mathbf{G}=\left[\begin{array}{ll:llll}\mathbf{I}_{3 \times 3} & \mathbf{P}^{T}\end{array}\right] \\ \left.\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]\end{array}\right]=\left[\begin{array}{lll}\mathbf{P} & \mathbf{I}_{4 \times 4}\end{array}\right]$.

CYCLIC BLOCK CODES

Cyclic codes are a subclass of linear block codes.
Encoding and syndrome calculation are easily performed using feedback shift-registers.

- Hence, relatively long block codes can be implemented with a reasonable complexity.

BCH and Reed-Solomon codes are cyclic codes.

CYCLIC BLOCK CODES

A linear (\mathbf{n}, k) code is called a Cyclic code if all cyclic shifts of a codeword are also a codeword.

$$
\begin{aligned}
& \mathbf{U}=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right) \\
& \mathbf{U}^{(i)}=\left(u_{n-i}, u_{n-i+1}, \ldots, u_{n-1}, u_{0}, u_{1}, u_{2}, \ldots, u_{n-i-1}\right)
\end{aligned}
$$

\square Example:

$$
\begin{aligned}
& \mathbf{U}=(1101) \\
& \mathbf{U}^{(1)}=(1110) \quad \mathbf{U}^{(2)}=(0111) \quad \mathbf{U}^{(3)}=(1011) \quad \mathbf{U}^{(4)}=(1101)=\mathbf{U}
\end{aligned}
$$

CYCLIC BLOCK CODES

Algebraic structure of Cyclic codes, implies expressing codewords in polynomial form

$$
\mathbf{U}(X)=u_{0}+u_{1} X+u_{2} X^{2}+\ldots+u_{n-1} X^{n-1} \quad \text { degree }(n-1)
$$

\square Relationship between a codeword and its cyclic shifts:

$$
\begin{aligned}
X \mathbf{U}(X) & =u_{0} X+u_{1} X^{2}+\ldots, u_{n-2} X^{n-1}+u_{n-1} X^{n} \\
& =\underbrace{u_{n-1}+u_{0} X+u_{1} X^{2}+\ldots+u_{n-2} X^{n-1}}_{\mathbf{U}^{(1)}(X)}+\underbrace{u_{n-1} X^{n}+u_{n-1}}_{u_{n-1}\left(X^{n}+1\right)} \\
& =\mathbf{U}^{(1)}(X)+u_{n-1}\left(X^{n}+1\right)
\end{aligned}
$$

Hence:

$$
\mathbf{U}^{(1)}(X)=X \mathbf{U}(X) \text { modulo }\left(X^{n}+1\right)
$$

$$
\mathbf{U}^{(i)}(X)=X^{i} \mathbf{U}(X) \text { modulo }\left(X^{n}+1\right)
$$

CYCLIC BLOCK CODES

Basic properties of Cyclic codes:

- Let C be a binary (n, k) linear cyclic code

1. Within the set of code polynomials in C , there is a unique monic polynomial with minimal degree is called the generator polynomials.
2. Every code polynomial in C, can be expressed uniq ${ }^{(1)}$ (y Y)
3. The generator polynomial is aractif. ${ }^{\circ} \mathbf{g} \mathbf{g}(X)$

$$
\mathbf{g}(X)=g_{0}+g_{1} X+\ldots+g_{r} X^{r}
$$

$$
\mathbf{U}(X)
$$

$$
\mathbf{U}(X)=\mathbf{m}(X) \mathbf{g}(X)
$$

$\mathbf{g}(X)$

$$
X^{n}+1
$$

CYCLIC BLOCK CODES

4. The orthogonality of \mathbf{G} and \mathbf{H} in polynomial form is expressed as This means is also a factor of

$$
\mathbf{g}(X) \mathbf{h}(X)=X^{n}+1
$$

5. The row of the cyclic shff of the generator polynomial.

$$
i, i=1, \ldots, k
$$

"i-1"

$$
\lceil a \quad a \quad \cdots \quad a \quad 0\rceil]
$$

Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra Operations (multiplication, inverse, solution of $A x=b$) etc possible

$$
\left\lfloor X^{k-1} \mathbf{g}(X)\right\rfloor\left\lfloor\begin{array}{llllll}
& g_{0} & g_{1} & \cdots & g_{r} & \\
\mathbf{0} & & g_{0} & g_{1} & \cdots & g_{r}
\end{array}\right]
$$

CYCLIC BLOCK CODES

Systematic encoding algorithm for an (n, k) Cyclic code:

1. Multiply the message polynomial
2. Divide the result of Step 1 by the ${ }^{\text {g }}$ Unerato X^{n-k} polynomial . Let be the reminder.
3. Add $\quad \mathbf{g} 6 X) \quad \mathbf{p}(X)_{\text {to }}$ form the codeword

$$
\begin{equation*}
\mathbf{p}(X) \quad X^{n-k} \mathbf{m}(X) \tag{X}
\end{equation*}
$$

Remember CRC used to detect errors in packets?
 "Cyclic" Redundancy Check: same idea!

CYCLIC BLOCK CODES

Example: For the systematic $(7,4)$ Cyclic code with generator polynomial $\mathbf{g}(X)=1+X+X^{3}$

1. Find the codeword for the message $\mathbf{m}=(1011)$

EXAMPLE: ENCODING OF SYSTEMATIC CYCLIC CODES

Encode 1011 in systematic form in the $(7,4)$ code

Solution

(1) $d(x)=1+x^{2}+x^{3}$
(2) $x^{n-k} d(x)=x^{3}+x^{5}+x^{6}$

$$
\begin{equation*}
x ^ { 3 } + x + 1 \longdiv { x ^ { 6 } + x ^ { 5 } + \quad x ^ { 3 } + x ^ { 2 } + x + 1 } \tag{3}
\end{equation*}
$$

$$
\frac{x^{6}+x^{4}+x^{3}}{x^{5}+x^{4}}
$$

(1) Express the data din polynomial form, as $d(x)$.
(2) Multiply $d(x)$ by x^{n-k} (equivalent to shifting the data bits to the right-hand end of the codeword.
(3) Divide the result by $g(x)$, and take the remainder $r(x)$.
(4) Form the codeword polynomial as:

$$
\begin{equation*}
c(x)=r(x)+x^{n-k} d(x) \tag{6.10}
\end{equation*}
$$

$$
\Rightarrow r(x)=1 \text { or } \mathbf{r}=100
$$

(4) $c(x)=r(x)+x^{n-k} d(x)=1+x^{3}+x^{5}+x^{6} \Rightarrow \mathbf{c}=\mathbf{r d}=1001011$
which is systematic, although the data word is found at the end of the codeword, rather than at the beginning. The same data, encoded using the generator matrix of (6.1), would yield the codeword 1011100 .

Decoding cyclic codes

When the received word \boldsymbol{r} is $\mathbf{1 1 0 1 1 0 1}$,

$$
r(x)=x^{6}+x^{5}+x^{3}+x^{2}+1
$$

We now compute $s(x)=\bmod [r(x) / g(x)]$

$$
\left.g(x) \quad \begin{aligned}
x^{3}+x^{2}+1 \\
\frac{x^{3}}{x^{6}+x^{5}+x^{3}+x^{2}+1} \\
x^{6}+x^{5}+x^{3}
\end{aligned} \right\rvert\,
$$

Hence, $\boldsymbol{s}=\mathbf{1 0 1}$. From Table 16.6, this gives $\boldsymbol{e}=\mathbf{0 0 0 1 0 0 0}$, and

$$
c=r \oplus e=\mathbf{1 1 0 1 1 0 1} \oplus \mathbf{0 0 0 1 0 0 0}=\mathbf{1 1 0 0 1 0 1}
$$

Hence, from Table 16.5 we have

$$
d=\mathbf{1 1 0 0}
$$

In a similar way, we determine for $r=0101000, s=110$ and $e=1000000$; hence $c=r \oplus e=1101000$, and $d=1101$. For $r=0001100, s=001$ and $e=0000001$; hence $c=r \oplus e=0001101$, and $d=0001$.

CYCLIC BLOCK CODES

2. Find the generator and parity check matrices, \mathbf{G} and \mathbf{H}, respectively.

CYCLIC BLOCK CODES

Syndrome decoding for Cyclic codes:
-Received codeword in polynomial form is given by

$$
\begin{aligned}
& \text { Received } \\
& \text { codeword }
\end{aligned} \leftarrow \mathbf{r}(X)=\mathbf{U}(X)+\mathbf{e}(X) \longrightarrow \underset{\text { pattern }}{\text { Error }}
$$

- The syndrome is the reminder obtained by dividing the received polynomial by the generator polynomial.

$$
\mathbf{r}(X)=\mathbf{q}(X) \mathbf{g}(X)+\mathbf{S}(X) \quad \text { Syndrome }
$$

- With syndrome ana stanaara array, error is estimated.

In Cyclic codes, the size of standard array is considerably reduced.

EXAMPLE OF THE BLOCK CODES

WELL-KNOWN CYCLIC CODES

$(n, 1)$ Repetition codes. High coding gain, but low rate
(n, k) Hamming codes. Minimum distance always 3. Thus can detect 2 errors and correct one error. $n=2^{m}-1, k=n-m$,
Maximum-length codes. For every integer there exists a maximum length code (n, k) with $n=2^{k}-1, d_{m i n}^{m} \geq 2^{k-1}$. Hamming codes are dual of maximal codes.
$k \geq 3$
BCH-codes. For every integer and
there exist a code with $n=\mathbf{2}^{\boldsymbol{m}} \mathbf{- 1}$, where t is the error correction capability
(n, k) Reed-Solomon (RS) codesmoiks with k symbols that consists of $k \geq \frac{m \text { bits }}{\text { Codegt }}$ that are encgded to yield code words of n symbols. For these
and
$B C H$ and RS are popular due to large $d_{\text {min }}$ large number of codes, and

REED-SOLOMON CODES (RS)

Fig. 3. RS Code versus Convolutional Code.
Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits.
Can tolerate burst error better (fewer symbols in error for a given bit-level burst event). Shortened RS-codes used in CD-ROMs, DVDs etc

SHORTENED REED SOLOMON CODES

RS-CODE PERFORMANCE

Fig. 2. RS($64, k$) Random Digital Error Performance.
Fig. 5. RS Codes of 7/8-th Rate
Longer blocks, better performance
Encoding/decoding complexity lower for higher code rates (i.e. > $1 / 2$): $\mathbf{O}\{K(N-K)$ $\left.\log _{2} \mathrm{~N}\right\}$.

CONVOLUTIONAL CODES

BLOCK VS
 CONVOLUTIONAL CODING

(n,k) block codes: Encoder output of
n bits depends only on the k input bits
(n, k, K) convolutional codes:
each source bit influences $n(K+1)$ encoder output bits

input bit

BLOCK DIAGRAM: CONVOLUTIONAL CODING

CONVOLUTIONAL CODES-CONT'D

A Convolutional code is specified by three parameters
or where
$\left(n, k_{1} K\right)$ is the coding, rate, determining the number of data bits per coded bit.

- K is the cpnstraint length of the encoder a where the encoder has $K-1$ meraory demehts.

A RATE ½ CONVOLUTIONAL ENCODER

Convolutional encoder (rate $1 / 2, K=3$)

- 3 bit shift-register where the first one takes the incoming data bit and the rest form the memory of the encoder.

A RATE ½ CONVOLUTIONAL ENCODER

A RATE ½ CONVOLUTIONAL ENCODER (CONTD)

$$
\begin{aligned}
\mathbf{m} & =(101) \longrightarrow \text { Encoder } \longrightarrow \mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 0 & 10 & 1
\end{array}\right) \\
\mathrm{n} & =2, \mathrm{k}=1, \mathrm{~K}=3, \\
\mathrm{~L} & =3 \text { input bits } \rightarrow 10 \text { output bits }
\end{aligned}
$$

EFFECTIVE CODE RATE

Initialize the memory before encoding the first bit (all-zero) Clear out the memory after encoding the last bit (all-zero)

- Hence, a tail of zero-bits is appended to data bits.

$$
R_{e f f}=\frac{L}{n(L+K-1)}<R_{c}
$$

$$
\mathbf{m}=(101) \longrightarrow \text { Encoder } \longrightarrow \mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right)
$$

$$
\text { Example: } \mathrm{n}=2, \mathrm{k}=1, \mathrm{~K}=3, \mathrm{~L}=3 \text { input bits. }
$$

$$
\text { Output }=\mathrm{n}(\mathrm{~L}+\mathrm{K}-1)=2 *(3+3-1)=10 \text { output bits }
$$

ENCODER REPRESENTATION

Vector representation:

- We define n binary vector with K elements (one vector for each modulo-2 adder).
- The i:th element in each vector, is " 1 " if the i:th stage in the shift register is connected to the corresponding modulo-2 adder, and " 0 " otherwise.
-Example:

ENCODER REPRESENTATION: IMPULSE RESPONSE

Impulse response representaiton:

- The response of encoder to a single "one" bit that goes through it.
-Example:

ENCODER REPRESENTATION: POLYNOMIAL

Polynomial representation:

- We define n generator polynomials, one for each modulo2 adder. Each polynomial is of degree $K-1$ or less and describes the connection of the shift registers to the corresponding modulo-2 adder.
- Example:

$$
\begin{aligned}
& \mathbf{g}_{1}(X)=g_{0}^{(1)}+g_{1}^{(1)} \cdot X+g_{2}^{(1)} \cdot X^{2}=1+X+X^{2} \\
& \mathbf{g}_{2}(X)=g_{0}^{(2)}+g_{1}^{(2)} \cdot X+g_{2}^{(2)} \cdot X^{2}=1+X^{2}
\end{aligned}
$$

The output sequence is found as follows:
$\mathbf{U}(X)=\mathbf{m}(X) \mathbf{g}_{1}(X)$ interlaced with $\mathbf{m}(X) \mathbf{g}_{2}(X)$

ENCODER REPRESENTATION -CONT’D

In more details:

$$
\begin{aligned}
\mathbf{m}(X) \mathbf{g}_{1}(X) & =\left(1+X^{2}\right)\left(1+X+X^{2}\right)=1+X+X^{3}+X^{4} \\
\mathbf{m}(X) \mathbf{g}_{2}(X) & =\left(1+X^{2}\right)\left(1+X^{2}\right)=1+X^{4} \\
\hline \mathbf{m}(X) \mathbf{g}_{1}(X) & =1+X+0 . X^{2}+X^{3}+X^{4} \\
\mathbf{m}(X) \mathbf{g}_{2}(X) & =1+0 . X+0 . X^{2}+0 . X^{3}+X^{4} \\
\hline \mathbf{U}(X) & =(1,1)+(1,0) X+(0,0) X^{2}+(1,0) X^{3}+(1,1) X^{4} \\
\mathbf{U} & =11 \quad 10 \quad 00 \quad 10
\end{aligned}
$$

STATE DIAGRAM

A finite-state machine only encounters a finite number of states.
State of a machine: the smallest amount of information that, together with a current input to the machine, can predict the output of the machine.
In a convolutional encoder, the state is represented by the content of the memory.
Hence, there are states. (grows exponentially w/ constraint length)

$$
2^{K-1}
$$

STATE DIAGRAM - CONT'D

TRELLIS - CONT'D

Trellis diagram is an extension of the state diagram that shows the passage of time.

- Example of a section of trellis for the rate $1 / 2$ code

TRELLIS -CONT'D

A trellis diagram for the example code Input bits

Tail bits

Output bits

11	10	00	10	11

TRELLIS - CONT'D

OPTIMUM DECODING

If the input sequence messages are equally likely, the optimum decoder which minimizes the probability of error is the Maximum likelihood decoder.

ML decoder, selects a codeword among all the possible codewords which maximizes the lik $\oplus\left({ }^{\prime}\left(\mathrm{K} \phi \mathrm{b} \mathrm{d}^{\prime}\right)\right.$) functio where is therreceived
sequence and is one of the possible codewords:
$>$ ML decoding rule:
Choose $\mathbf{U}^{\left(m^{\prime}\right)}$ if $p\left(\mathbf{Z} \mid \mathbf{U}^{\left(m^{\prime}\right)}\right)=\max _{\text {overall } \mathbf{U}^{(m)}} p\left(\mathbf{Z} \mid \mathbf{U}^{(m)}\right)$

ML DECODING FOR MEMORY-LESS CHANNELS

Due to the independent channel statistics for memoryless channels, the likelihood function becomes
$p\left(\mathbf{Z} \mid \mathbf{U}^{(m)}\right)=p_{z_{1}, z_{2}, \ldots, z_{i}, \ldots}\left(Z_{1}, Z_{2}, \ldots, Z_{i}, \ldots \mid U^{(m)}\right)=\prod_{i=1}^{\infty} p\left(Z_{i} \mid U_{i}^{(m)}\right)=\prod_{i=1}^{\infty} \prod_{j=1}^{n} p\left(z_{j i} \mid u_{j i}^{(m)}\right)$
and equivalently, the log-likelihood function becomes

$$
\gamma_{\mathbf{U}}(m)=\underbrace{\log p\left(\mathbf{Z} \mid \mathbf{U}^{(m)}\right)}_{\text {Path metric }}=\sum_{i=1}^{\infty} \underbrace{\log p\left(Z_{i} \mid U_{i}^{(m)}\right)}_{\substack{\text { Branch metric } \\ H_{i}^{\prime \prime}}}=\sum_{i=1}^{\infty} \sum_{j=1}^{n} \underbrace{\log p\left(z_{j i} \mid u_{j i}^{(m)}\right)}_{\text {Bit metric }}
$$

The path metric up to time index , is called the partial path metric.
$>$ ML decoding rule:
Choose the path with maximum metric among all the paths in the trellis.
This path is the "closest" path to the transmitted sequence.

AWGN CHANNELS

For BPSK modulation the transmitted sequence corresponding to the codewkotd is denoted by wheres $\left.^{(m)}=\left(S_{1}^{(m)}, S_{2}^{(m)}, \ldots, S_{i}^{(m)}, \ldots\right) \quad S_{i}^{(m)} \neq \mathbf{A d} s_{1 i}^{(m)}, \ldots, s_{j i}^{(m)}, \ldots, s_{n i}^{(m)}\right)$ and $s_{i j}= \pm \sqrt{E_{c}}$
The log-likelihood function becomes

$$
\left.\gamma_{\mathbf{U}}(m)=\sum_{i=1}^{\infty} \sum_{j=1}^{n} z_{j i} s_{j i}^{(m)}=<\mathbf{Z}, \mathbf{S}^{(m)}\right\rangle \quad \begin{gathered}
\text { Inner product or correlation } \\
\text { between } \mathbf{Z} \text { and } \mathbf{S}
\end{gathered}
$$

- Maximizing the correlation is equivalent to minimizing the Euclidean distance.
$>$ ML decoding rule:
Choose the path which with minimum Euclidean distance to the received sequence.

THE VITERBI ALGORITHM

The Viterbi algorithm performs Maximum likelihood decoding.
It find a path through trellis with the largest metric (maximum correlation or minimum distance).

- It processes the demodulator outputs in an iterative manner.
- At each step in the trellis, it compares the metric of all paths entering each state, and keeps only the path with the largest metric, called the survivor, together with its metric.

$$
L 2^{K-1}
$$

- It proceeds in the trellis by eliminating the least likely paths.
It reduces the decoding complexity to

THE VITERBI ALGORITHM - CONT'D

Viterbi algorithm:

A. Do the following set up:

- For a data block of L bits, form the trellis. The trellis has $L+K-1$ sections or levels and starts at tirme and ends up attlime
- Label all the branches in the trellis with their corresponding branch metric.
- For each state in the trellis at the time

which is parameter (path metric)

B. Then, do the following:

THE VITERBI ALGORITHM - CONT'D

1. Set and
2. $\operatorname{At}(t) \pi \Phi=0$, compute the partial path metrics for all the paths entering each state.
3. Set ${ }^{i}$ equal to the best partial path metric entering each state at time Keeptthe survivor path and delete the dead paths from the trellis. t_{i}
4. If , increase by 1 and return to step 2.
C. Start at state zero at time . Follow the surviving branches backwards through the trellis. The path thus defined is unique and correspond to the ML codewordt ${ }_{L+K}$

EXAMPLE OF VITERBI DECODING

$$
\begin{aligned}
& \mathbf{m}=(101) \\
& \mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
& \mathbf{Z}=\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

VITERBI DECODING-CONT'D

Label al the branches with the branch metric (Hamming distance)

VITERBI DECODING-CONT'D

i=2

$$
\mathbf{m}=(101)
$$

$$
\mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right)
$$

$$
\mathbf{Z}=\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
$$

VITERBI DECODING-CONT'D

$$
\underline{i=3}
$$

$$
\begin{aligned}
\mathbf{m} & =(101) \\
\mathbf{U} & =\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
\mathbf{Z} & =\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

VITERBI DECODING-CONT'D

$i=4$

$$
\begin{aligned}
& \mathbf{m}=\left(\begin{array}{llll}
101)
\end{array}\right. \\
& \mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
& \mathbf{Z}=\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

VITERBI DECODING-CONT'D

$i=5$

$$
\begin{aligned}
\mathbf{m} & =(101) \\
\mathbf{U} & =\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
\mathbf{Z} & =\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

VITERBI DECODING-CONT'D

$i=6$

$$
\begin{aligned}
\mathbf{m} & =(101) \\
\mathbf{U} & =\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
\mathbf{Z} & =\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

VITERBI DECODING-CONT'D

Trace back and then:

$$
\begin{aligned}
& \hat{\mathbf{m}}=(100) \\
& \hat{\mathbf{U}}=\left(\begin{array}{lllll}
11 & 10 & 11 & 00 & 00
\end{array}\right) \\
& \mathbf{m}=(101) \\
& \mathbf{U}=\left(\begin{array}{lllll}
11 & 10 & 00 & 10 & 11
\end{array}\right) \\
& \mathbf{Z}=\left(\begin{array}{lllll}
11 & 10 & 11 & 10 & 01
\end{array}\right)
\end{aligned}
$$

SOFT AND HARD DECISIONS

Hard decision:

- The demodulator makes a firm or hard decision whether one or zero is transmitted and provides no other information reg. how reliable the decision is.
- Hence, its output is only zero or one (the output is quantized only to two level) which are called hard-olts.

Soft decision:

The demodulator provides the decoder with some side information together with the decision.

- The side information provides the decoder with a measure of confidence for the decision.
- The demodulator outputs which are called soft-bits, are quantized to more than two levels. (eg: 8-levels)

Decoding based on soft-bits, is called the "soft-decision decoding". On AWGN channels, $2 d B$ and on fading channels 6 dB gain are obtained by using soft-decoding over hard-decoding!

PERFORMANCE BOUNDS ...

Basic coding gain (dB) for soft-decision Viterbi decoding

INTERLEAVING

Convolutional codes are suitable for memoryless channels with random error events.

Some errors have bursty nature:

- Statistical dependence among successive error events (time-correlation) due to the channel memory.
- Like errors in multipath fading channels in wireless communications, errors due to the switching noise, ...
"Interleaving" makes the channel looks like as a memoryless channel at the decoder.

INTERLEAVING ...

- Consider a code with $t=1$ and 3 coded bits.
- A burst error of length 3 can not be corrected.

- Let us use a block interleaverr3X3

$\square \mathrm{A} 1|\mathrm{~B} 1| \mathrm{C} 1|\mathrm{~A} 2| \mathrm{B} 2|\mathrm{C} 2| \mathrm{A} 3|\mathrm{~B} 3| \mathrm{C} 3 \mid$
$\mathrm{A} 1|\mathrm{~A} 2| \mathrm{A} 3|\mathrm{~B} 1| \mathrm{B} 2|\mathrm{~B} 3| \mathrm{C} 1|\mathrm{C} 2| \mathrm{C} 3$

CONCATENATED CODES

CONCATENATED CODES

A concatenated code uses two levels on coding, an inner code and an outer code (higher rate).

- Popular concatenated codes: Convolutional codes with Viterbi decoding as the inner code and Reed-Solomon codes as the outer code

The purpose is to reduce the overall complexity, yet achieving the required error performance.

CONCATENATED CODES

$$
\mathcal{C}^{\prime} \rightarrow \underbrace{\mathcal{C} \rightarrow Q \rightarrow \mathcal{D}}_{Q^{\prime}} \rightarrow \mathcal{D}^{\prime}
$$

Fig. 4. Concatenated Code Schematic.

Fig. I0. Performance of $R S(255,223)$ and $(2,1), K=7$ Conv. Code.

PRODUCT/RECTANGULAR CODES: CONCATENATION + INTERLEAVING

Some concatenated codes make use of the idea of interleaving.

Blocks of size larger than the block lengths of the constituent codes C and C'.

- After encoding the data of one block using code C',
- ... the bits are reordered within the block in such a way that nearby bits are separated from each other once the block is fed to the second code C.

A simple example of an interleaver is a rectangular code or product code in which ...
... the data: $\mathrm{K}_{2} \times \mathrm{K}_{1}$ rectangular block, and ...
... encoded horizontally using an $\left(\mathrm{N}_{1}, \mathrm{~K}_{1}\right)$ linear code,
... then vertically using a $\left(\mathrm{N}_{2}, \mathrm{~K}_{2}\right)$ linear code.

PRODUCT CODE EXAMPLE

(b)

(c)

(a) A string 1011 encoded using a concatenated code w/ two Hamming codes, $\mathrm{H}(3$, 1) \equiv Repetition code (R 3) and $\mathrm{H}(7,4)$.
(b) a noise pattern that flips 5 bits.
(c) The received vector.

PRODUCT CODES (CONTD)

(c)

(d) After decoding using the horizontal $(3,1)$ decoder, and
(e) after subsequently using the vertical (7; 4 decoder.
The decoded vector matches the original.
Note: Decoding in the other order (weaker-code-first) leads to residual error in this example:

1	1	1
1	1	1
1	1	
1	1	1
1	1	1
0	0	0
0	0	0
1	1	1

PRACTICAL EXAMPLE: COMPACT DISC

"Without error correcting codes, digital audio would not be technically feasible."
Channel in a CD playback system consists of a transmitting laser, a recorded disc and a photo-detector.
Sources of errors are manufacturing damages, fingerprints or scratches
Errors have bursty like nature.
Error correction and concealment is done by using a concatenated error control scheme, called cross-interleaver Reed-Solomon code (CIRC).
Both the inner and outer codes are shortened RS codes

COMPACT DISC - CIRC ENCODER

CIRC encoder and decoder:

Decoder

ADAPTIVE MODULATION AND CODING

ADAPTIVE MODULATION

Just vary the "M" in the MQAM constellation to the appropriate SNR
Can be used in conjunction with spatial diversity

ADAPTIVE MODULATION/CODING: MULTI-USER

Exploit multi-user diversity.

- Users with high SNR: use MQAM (large M) + high code rates
- Users with low SNR: use BPSK + low code rates (i.e. heavy error protection)

In any WiMAX frame, different users (assigned to time-frequency slots within a frame) would be getting a different rate!

- i.e. be using different code/modulation combos..

BASIS FOR ADAPTIVE MODULATION/CODING (AMC)

 K-user system: the subcarrier of interest experiences i.i.d. Rayleigh fading: each user's channel gain is independent of the others, and is denoted by h_{k}.

Probability density function of $h_{\max }$.

the maximum of the K users channel gains.

WIMAX: USES FEEDBACK \& BURST PROFILES

Figure 6.7: Adaptive Modulation and Coding Block Diagram.
Lower data rates are achieved by using a small constellation - such as QPSK - and low rate error correcting codes such as rate $1 / 2$ convolutional or turbo codes.
The higher data rates are achieved with large constellations - such as 64QAM - and less robust error correcting codes, for example rate 3/4 convolutional, turbo, or LDPC codes.
Wimax burst profiles: 52 different possible configurations of modulation order and coding types and rates.
WiMAX systems heavily protect the feedback channel with error correction, so usually the main source of degradation is due to mobility, which causes channel estimates to rapidly become obsolete.

AMC CONSIDERATIONS

BLER and Received SINR: In adaptive modulation theory, the transmitter needs only to know the statistics and instantaneous channel SINR. From the channel SINR, it can determine the optimum coding/modulation strategy and transmit power.

- In practice however, the BLER should be carefully monitored as the final word on whether the data rate should be increased (if the BLER is low) or decreased to a more robust setting.
Automatic Repeat Request (ARQ); ARQ allows rapid
retransmissions, and Hyprda ARQ generally increases the 1% ide B 10%.
- For delay-tolerant applications, jt may be possible to accept a BLER approaching even 70\%, if Chase combining is used in conjunction with HARQ to make use of unsuccessful packets.
Power control vs. Waterfilling: In theory the best power control pollcy from a capactity standpoint is the so-called waterfilling strategy, in which more power is allocated to strong channels, athd less power allocated to weeak channels. In practice, the opposite may be true in some cases.

AMC VS SHANNON LIMIT

Optionally turbo-codes or LDPC codes can be used instead of simple block/convolutional codes in these schemes

MAIN POINTS

Adaptive MQAM uses capacity-achieving power and rate adaptation, with power penalty K.

Adaptive MQAM comes within 5-6 dB of capacity
Discretizing the constellation size results in negligible performance loss.

Constellations cannot be updated faster than 10s to 100 s of symbol times: OK for most dopplers.

Estimation error and delay lead to irreducible error floors.

TOWARDS THE SHANNON LIMIT! LDPC, TURBO CODES, DIGITAL FOUNTAINS

RECALL: CODING GAIN POTENTIAL

Fig. I0. Performance of $R S(255,223)$ and $(2,1), K=7$ Conv. Code.
vvitn convolutionaı coae aıone, @ロடк or 10^{-5}, we require $\mathrm{Eb} / \mathrm{No}$ of 4.5 dB or get a gain of 5.1 dB .
With concatenated RS-Convolutional code, BER curve \sim vertical cliff at an Eb/No of about 2.5-2.6 dB, i.e a gain of 7.1dB.
We are still 11.2-7.1=4.1 dB away from the Shannon limit ©
Turbo codes and LDPC codes get us within 0.1 dB of the Shannon limit !! ©

LOW-DENSITY PARITY CHECK (LDPC) CODES

LDPC

- Low-Density Parity-Check (LDPC) codes are a class of linear block codes characterized by sparse parity check matrices H
- H has a low-density of 1 's
- LDPC codes were originally invented by Robert Gallager in the early 1960's but were largely ignored until they were "rediscovered" in the mid-1990's by MacKay
- Sparseness of H can yield large minimum distance $d_{\text {min }}$ and reduces decoding complexity
- Can perform within 0.0045 dB of Shannon limit
- These code are making their way into standards
- Binary turbo: UMTS, cdma2000
- Duobinary turbo: DVB-RCS, 802.16
- LDPC: DVB-S2 standard.

EXAMPLE LDPC CODE

A low-density parity-check matrix and the corresponding (bipartite) graph of a rate-1/4 low-density parity-check code with
blocklength $\mathrm{N}=16$, and $\mathrm{M}=12$ constraints.
Each white circle represents a transmitted bit.
Each bit participates in j = 3 constraints, represented by s-itlares.
Each constraint forces the sum of the $k=4$ bits to which it is
connected to be even.
This code is a $(16 ; 4)$ code. Outstanding performance is obtained when the blocklength is increased to $N \approx 10,000$.

TANNER GRAPH

- A Tanner graph is a bipartite graph that describes the parity check matrix H
- There are two classes of nodes:
- Variable-nodes: Correspond to bits of the codeword or equivalently, to columns of the parity check matrix
- There are n v-nodes
- Check-nodes: Correspond to parity check equations or equivalently, to rows of the parity check matrix
- There are $m=n-k$ c-nodes
- Bipartite means that nodes of the same type cannot be connected (e.g. a c-node cannot be connected to another c-node)
- The $i^{\text {th }}$ check node is connected to the $j^{\text {th }}$ variable node iff the $(\mathrm{i}, \mathrm{j})^{\text {th }}$ element of the parity check matrix is one, i.e. if $h_{i j}=1$
- All of the v-nodes connected to a particular c-node must sum (modulo-2) to zero

A.K.A FACTOR GRAPH NOTATION

$$
\mathbf{H}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

$$
\mathbf{z}=\mathbf{H r}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

FACTOR GRAPHS

A factor graph shows how a function of several variables can be factored into a product of "smaller" functions.
For example, the function g defined by $g(x, y)=x y+x$ can be factored into $g(x, y)=f_{1}(x) f_{2}(y)$ where $f_{1}(x)=x$ and $f_{2}(y)=y+1$.
The factor graph depicting this factorization: x

Graph for function $g(x, y, z)=f_{1}(x, y) f_{2}(y, z) f_{3}(x, z)$.

Why Factor graphs?

1. Very general: variables and functions are arbitrary
2. Factorization => Sum-Product Algorithm can be applied
3. Third, many efficient algorithms are special cases of the Sum-Product

Algorithm applied to factor graphs:
FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward Algorithm, Kalman Filter and Bayesian Network Belief Propagation.
Brings many good algorithms together in a common framework.

LDPC CODING CONSTRUCTIONS

- Around 1996, Mackay and Neal described methods for constructing sparse \mathbf{H} matrices
- The idea is to randomly generate a $M \times N$ matrix \mathbf{H} with weight d_{v} columns and weight d_{c} rows, subject to some constraints
- Construction 1A: Overlap between any two columns is no greater than 1
- This avoids length 4 cycles
- Construction $2 A$: $\mathrm{M} / 2$ columns have $d_{v}=2$, with no overlap between any pair of columns. Remaining columns have $d_{v}=3$. As with $1 A$, the overlap between any two columns is no greater than 1
- Construction 1 B and 2 B : Obtained by deleting select columns from 1 A and 2 A
- Can result in a higher rate code

LDPC DECODING: ITERATIVE

- Like Turbo codes, LDPC can be decoded iteratively
- Instead of a trellis, the decoding takes place on a Tanner graph
- Messages are exchanged between the v-nodes and c-nodes
- Edges of the graph act as information pathways
- Hard decision decoding
- Bit-flipping algorithm
- Soft decision decoding
- Sum-product algorithm
- Also known as message passing/ belief propagation algorithm
- Min-sum algorithm
- Reduced complexity approximation to the sum-product algorithm
- In general, the per-iteration complexity of LDPC codes is less than it is for turbo codes
- However, many more iterations may be required ($\max \approx 100 ; a v g \approx 30$)
- Thus, overall complexity can be higher than turbo

REGULAR VS IRREGULAR LDPC CODES

- An LDPC code is regular if the rows and columns of H have uniform weight, i.e. all rows have the same number of ones $\left(\mathbf{d}_{\mathrm{v}}\right)$ and all columns have the same number of ones $\left(d_{c}\right)$
- The codes of Gallager and MacKay were regular (or as close as possible)
- Although regular codes had impressive performance, they are still about 1 dB from capacity and generally perform worse than turbo codes
- An LDPC code is irregular if the rows and columns have non-uniform weight
- Irregular LDPC codes tend to outperform turbo codes for block lengths of about $\mathrm{n}>10^{5}$
- The degree distribution pair (λ, ρ) for a LDPC code is defined as

$$
\begin{aligned}
& \lambda(x)=\sum_{i=2}^{d_{i}} \lambda_{i} x^{i-1} \\
& \rho(x)=\sum_{i=1}^{d_{i}} \rho_{i} x^{i-1}
\end{aligned}
$$

- λ_{i}, ρ_{i} represent the fraction of edges emanating from variable (check) nodes of degree i

IRREGULAR LDPC CODES

- Luby et. al. (1998) developed LDPC codes based on irregular LDPC Tanner graphs
- Message and check nodes have conflicting requirements
- Message nodes benefit from having a large degree
- LDPC codes perform better with check nodes having low degrees
- Irregular LDPC codes help balance these competing requirements
- High degree message nodes converge to the correct value quickly
- This increases the quality of information passed to the check nodes, which in turn helps the lower degree message nodes to converge
- Check node degree kept as uniform as possible and variable node degree is non-uniform
- Code 14: Check node degree $=14$, Variable node degree $=5,6,21,23$
- No attempt made to optimize the degree distribution for a given code rate

TURBO CODES

TURBO CODES

- Turbo codes get their name because the decoder uses feedback, like a turbo engine.

TURBO ENCODER

The encoder of a turbo code.

Each box C1, C2, contains a convolutional code.
The source bits are reordered using a permutation $\boldsymbol{\pi}$ before they are fed to C2.
The transmitted codeword is obtained by concatenating or interleaving the
outputs of the two convolutional codes.
The random permutation is chosen when the code is designed, and fixed thereafter.

TURBO: MAP DECODING

- The goal of the maximum a posteriori (MAP) decoder is to determine $P(u(t)=1 \mid y)$ and $P(u(t)=0 \mid y)$ for each t.
- The probability of each message bit, given the entire received codeword.
- These two probabilities are conveniently expressed as a log-likelihood ratio:

$$
\lambda(t)=\log \frac{P[u(t)=1 \mid \mathbf{y}]}{P[u(t)=0 \mid \mathbf{y}]}
$$

Performance as a Function of Number of Iterations

TURBO CODES: PERFORMANCE..

- Turbo codes have extraordinary performance at low SNR. '
- Very close to the Shannon limit.
- Due to a low multiplicity of low weight code words.
- However, turbo codes have a BER "floor".
- This is due to their low minimum distance.
- Performance improves for larger block sizes.
- Larger block sizes mean more latency (delay).
- However, larger block sizes are not more complex to decode.
- The BER floor is lower for larger frame/interleaver sizes
- The complexity of a constraint length K_{TC} turbo code is the same as a $K=K_{C C}$ convolutional code, where:
$-\mathrm{K}_{\mathrm{CC}} \approx 2+\mathrm{K}_{\mathrm{TC}}+\log _{2}$ (number decoder iterations)

UMTS TURBO ENCODER

- From 3GPP TS 25212 v6.6.0, Release 6 (2005-09)
- UMTS Multiplexing and channel coding
- Data is segmented into blocks of L bits.
- where $40 \leq \mathrm{L} \leq 5114$

WIMAX: CONVOLUTIONAL TURBO CODES (CTC)

- The standard specifies an optional convolutional turbo code (CTC) for ${ }^{\prime}$ operation in the $2-11 \mathrm{GHz}$ range.
- Uses same duobinary CRSC encoder as DVB-RCS, though without output W.

- Modulation: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM.
- Key parameters:
- Input message size 8 to 256 bytes long.
- $r=\{1 / 2,2 / 3,3 / 4,5 / 6,7 / 8\}$

DIGITAL FOUNTAIN ERASURE CODES

WHAT IS A DIGITAL FOUNTAIN?

A digital fountain is an ideal/paradigm for data transmission.

- Vs. the standard (TCP) paradigm: data is an ordered finite sequence of bytes.

Instead, with a digital fountain, a k symbol file yields an infinite data stream ("fountain"); once you have received any k symbols from this stream, you can quickly reconstruct the original file.

HOW DO WE BUILD A DIGITAL FOUNTAIN?

We can construct (approximate) digital fountains using erasure codes.

- Including Reed-Solomon, Tornado, LT, fountain codes.

Generally, we only come close to the ideal of the paradigm.

- Streams not truly infinite; encoding or decoding times; coding overhead.

FORWARD ERROR CORRECTION (FEC): EG: REED-SOLOMON RS(N,K)

DIGITAL FOUNTAIN CODES (EG: RAPTOR CODES)

Rateless: No Block Size !
"Fountain of encoded pkts" Compute on demand!
$>=\mathbf{K}+\boldsymbol{\varepsilon}$ received

Recover K data packets!

Data $=\mathbf{K}$

Can be done by software \& @ very fast (eg: 1Gbps+).

RAPTOR/RATELESS CODES

Properties: Approximately MDS

- "Infinite" supply of packets possible.
- Need $k(1+\varepsilon)$ symbols to decode, for some $\varepsilon>0$.
- Decoding time proportional to $k \ln (1 / \varepsilon)$.
- On average, In ($1 / \varepsilon$) (constant) time to produce an encoding symbol.

Key: Very fast encode/decode time compared to RS codes
Compute new check packets on demand!

Bottomline: these codes can be made very efficient and deliver on the promise of the digital fountain paradigm.

DIGITAL FOUNTAIN ENCODER/DECODER

Encoder:

Each encoded packet t_{n} is produced from the source file $s_{1} s_{2} s_{3} \ldots s_{K}$ as follows:

1. \because Randomly choose the degree d_{n}.of the packet from a degree distribution $\rho(d)$; thëe appropriate choice of ρ depends on the source file size K, as we'll discuss later.
2. Choose, uniformly at random, d_{n} distinct input packets, and set t_{n} equal to the bitwise sum, modulo 2 of those d_{n} packets. This sum can be done by successively exclusive-or-ing the packets together.
3. Find a check node t_{n} that is connected to oniy one source packet s_{k}. (If there is no such check node, this decoding algorithm halts at this point, and fails to recover all the source packets.)
(a) Set $s_{k}=t_{n}$.
(b) Add s_{k} to all checks $t_{n^{\prime}}$ that are connected to s_{k} :

$$
\begin{equation*}
t_{n^{\prime}}:=t_{n^{\prime}}+s_{k} \quad \text { for all } n^{\prime} \text { such that } G_{n^{\prime} k}=1 \tag{50.1}
\end{equation*}
$$

(c) Remove all the edges connected to the source packet s_{k}.
2. Repeat (1) until all $\left\{s_{k}\right\}$ are determined.

DIGITAL FOUNTAIN DECODING (EXAMPLE)

Received bits: 1011

$\square t_{1}$ is of degree $1, s_{1}=t_{1}=1$
$\square t_{2} \& t_{3}$ XOR'ed w/ $s_{1}=1$. Remove s_{1} 's edges
$\square s_{2}$ set to $t_{4}=0\{$ degree $=1\}$

Repeat as before; $s_{3}=1$

First such code called "Tornado" code. Later: LT-codes; Concatenated version: "Raptor code"

ESOTERICS: ROBUST SOLITON DEGREE DISTRIBUTION

Figure 50.2. The distributions $\rho(d)$ and $\tau(d)$ for the case $K=10000, c=0.2, \delta=0.05$,

$$
\begin{aligned}
\rho(1) & =1 / K \\
\rho(d) & =\frac{1}{d(d-1)} \quad \text { for } d=2,3, \ldots, K
\end{aligned}
$$ which gives $S=244, K / S=41$, and $Z \simeq 1.3$. The distribution T is largest at $d=1$ and $d=K / S$.

$$
S \equiv c \ln (K / \delta) \sqrt{K}
$$

$$
\tau(d)= \begin{cases}\frac{S}{K} \frac{1}{d} & \text { for } d=1,2, \ldots(K / S)-1 \\ \frac{S}{K} \ln (S / \delta) & \text { for } d=K / S \\ 0 & \text { for } d>K / S\end{cases}
$$

Figure 50.3. The number of degree-one checks S (upper figure) and the quantity K^{\prime} (lower figure) as a function of the two parameters c and δ, for
$K=10000$. Luby's main theorem proves that there exists a value of c such that, given K^{\prime} received packets, the decoding algorithm will recover the K source packets with probability $1-\delta$.

APPLICATIONS: RELIABLE MULTICAST

Many potential problems when multicasting to large audience.

- Feedback explosion of lost packets.
- Start time heterogeneity.
- Loss/bandwidth heterogeneity.

A digital fountain solves these problems.

- Each user gets what they can, and stops when they have enough: doesn't matter which packets they've lost
- Different paths could have diff. loss rates

APPLICATIONS: DOWNLOADING IN PARALLEL

Can collect data from multiple digital fountains for the same source seamlessly.

- Since each fountain has an "infinite" collection of packets, no duplicates.
- Relative fountain speeds unimportant; just need to get enough.
- Combined multicast/multi-gather possible.

Can be used for BitTorrent-like applications.

- Microsoft's "Avalanche" product uses randomized linear codes to do "network coding"

http://research.microsoft.com/~pablolavalanche.aspx

 Used to deliver patches to security flaws rapidly; Microsoft Update dissemination etc
Single path: limited capacity, delay, loss...

Network paths usually have

- low e2e capacity,
- high latencies and
- high/variable loss rates.

IDEA: AGGREGATE CAPACITY, USE ROUTE DIVERSITY!

High Perceived Capacity

MULTI-PATH LT-TCP (ML-TCP): STRUCTURE

Map pkts \rightarrow paths intelligently based upon $\operatorname{Rank}\left(p_{i}, R T T_{i}, w_{i}\right)$

Per-path congestion control
Reliability @ aggregate, across paths
(FEC block = weighted sum of windows,
PFEC based upon weighted average loss rate)
Note: these ideas can be applied to other link-level multi-homing,
Network-level virtual paths, non-TCP transport protocols (including video-streaming)

SUMMARY

Coding: allows better use of degrees of freedom

- Greater reliability (BER) for a given Eb/No, or
- Coding gain (power gain) for a given BER.
- Eg: @ BER = 10-5:
- 5.1 dB (Convolutional), 7.1 dB (concatenated RS/Convolutional)
- Near ($0.1-1 \mathrm{~dB}$ from) Shannon limit (LDPC, Turbo Codes)
- Magic achieved through iterative decoding (belief propagation) in both LDPC/Turbo codes
- Concatenation, interleaving used in turbo codes
- Digital fountain erasure codes use randomized LDPC constructions as well.
Coding can be combined with modulation adaptively in response to SNR feedback
Coding can also be combined with ARQ to form Hybrid ARQ/FEC Efficient coding schemes now possible in software/high line rates => they are influencing protocol design at higher layers also: LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent, Network coding in Avalanche (Microsoft Updates) etc

